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In this paper, we continue our recent developments in [4,5] to devise numerical methods 
that have important provable properties to simulate electromagnetic wave propagation 
in nonlinear optical media. Particularly, we consider the one dimensional Kerr-Debye 
model with the Lorentz dispersion, termed as the Kerr-Debye-Lorentz model, where the 
nonlinearity in the polarization is a relaxed cubic Kerr type effect. The polarization also 
includes the linear Lorentz dispersion. As the relaxation time ε goes to zero, the model 
will approach the Kerr-Lorentz model.

The objective of this work is to devise and analyze asymptotic preserving (AP) and 
positivity preserving (PP) methods for the Kerr-Debye-Lorentz model. Being AP, the 
methods address the stiffness of the model associated with small ε, while capturing the 
correct Kerr-Lorentz limit as ε → 0 on under-resolved meshes. Being PP, the third-order 
nonlinear susceptibility will stay non-negative and this is important for the energy stability. 
In the proposed methods, the nodal discontinuous Galerkin (DG) discretizations of arbitrary 
order accuracy are applied in space to effectively handle nonlinearity; in time, several 
first and second order methods are developed. We prove that the first order in time fully 
discrete schemes are AP, PP and also energy stable. For the second order temporal accuracy, 
a novel modified exponential time integrator is proposed for the stiff part of the auxiliary 
differential equations modeling the electric polarization, and this is a key ingredient for 
the methods to be both AP and PP. In addition to a straightforward discretization of the 
constitutive law, we further propose a non-trivial energy-based approximation, with which 
the energy stability is also established mathematically. Numerical examples are presented 
that include an ODE example, a manufactured solution, the soliton-like propagation and 
the propagation of Sech signal in fused bulk silica, to compare the proposed methods and 
to demonstrate the accuracy, AP and PP property. The effect of the finite relaxation time ε
in the model is also examined numerically.
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1. Introduction

In this paper, we continue our recent developments in [4,5] to devise numerical methods that have important provable
properties to simulate electromagnetic wave propagation in nonlinear optical media. In such media, the material responds 
to light nonlinearly, and this contributes to many interesting optical effects including frequency mixing, second and third-
harmonic generation, and self-steepening etc [3,6,26].

Instead of working with approximated models such as asymptotic or paraxial wave models [3,6], we focus on the full 
Maxwell’s equations for the electromagnetic wave propagation along with a constitutive law that models linear and nonlin-
ear electric polarizations. The polarization model examined here is phenomenological at a macroscopic scale, and it is given 
mathematically in the form of auxiliary differential equations (ADEs) appended to the Maxwell part. Full Maxwell models 
are important to simulate and capture optical phenomena at small length scales or with multiple spatial and temporal 
scales. Numerical simulation of Maxwell’s equations is a well-studied area. In the literature, finite difference time domain 
(FDTD) methods [19,28,16], finite element (FEM) methods [15], pseudospectral methods [24], finite volume (FV) methods 
[2,10] are available for the integration of the Maxwell’s equations in nonlinear media, along with ADEs for the material re-
sponse with various effects. We want to mention our recent efforts in [4,5] to design energy stable FDTD and discontinuous 
Galerkin (DG) methods for Maxwell’s equations with the nonlinear Kerr and Raman effects together with the linear Lorentz 
polarization, and the related references within.

In this paper, we consider the one dimensional Kerr-Debye model with the Lorentz dispersion. Here the linear effect 
in the polarization includes a Lorentz oscillator driven by the electric field E . The classical Kerr effect is a phenomenon 
in which the refractive index of a material changes proportionally to the square of the applied electric field. This cubic 
nonlinearity is often modeled as an instantaneous effect, and it is relevant when the pulse widths are sufficiently short. 
The Kerr-Debye model considered here takes into account a relaxation process in the Kerr effect. The relaxation time of 
the nonlinear Kerr effect is at the sub-femtosecond (fs) level, and when it is neglected, one will recover the classical 
instantaneous Kerr model. However, to describe ultrashort pulses (e.g. a few cycles), the effect of the finite relaxation time 
can be important [30,17,1]. For instance in [17], the authors investigated the propagation of ultrashort pulses through a 
dispersive medium with the linear effect via three linear Lorentz (resonance) poles and the nonlinear Kerr effect with a 
finite relaxation time. The effects of a finite relaxation time, such as the reduction of the production of phase matched 
harmonics and slowing down of the self-steepening of the electric field envelope, are observed.

Beyond the common issues one encounters to numerically simulate wave propagations in dispersive media, there are 
additional challenges and considerations associated with simulating Kerr-Debye type models. In the Kerr-Debye-Lorentz 
model, the relaxation of the Kerr effect is modeled by an ADE for the third-order nonlinear susceptibility χ , given as 
∂tχ = − 1

ε (χ − E2), that enters into the constitutive law for the electric displacement (see equation (2.1c)). The parameter ε

is the relaxation time. When ε goes to 0, χ approaches E2 , and the model subsequently becomes the classical Kerr-Lorentz 
model. On the other hand, physically χ is always positive (or non-negative). When the relaxation time ε is small, the model 
is stiff and standard numerical methods may suffer from a restricted time step condition, �t = O (ε), for numerical stability. 
Numerically, we also want to preserve the positivity of χ , and this is important for the energy stability property. Numerical 
methods that preserve the non-negative property of χ are referred to as positivity preserving (PP) schemes.

The objective of this paper is to devise and analyze numerical methods that maintain at the discrete level some im-

portant properties of the continuous Kerr-Debye-Lorentz model. We also want to numerically examine the effect of the 
finite relaxation time in the underlying model. In particular, we will propose computational methods that are simultaneously

asymptotic preserving (AP) and PP, and possibly also energy stable. AP methods are a class of numerical methods that are 
designed to work with a wide range of the relaxation time ε. In addition, as ε → 0 and on the under-resolved meshes, 
the schemes will become consistent and stable discretizations of the limiting Kerr-Lorentz model that includes both the 
classical instantaneous nonlinear Kerr effect and the linear Lorentz dispersion. In other words, AP methods can address the 
stiffness of the model associated with the small ε, while capturing the correct asymptotic limit as ε → 0 without resolving 
the small ε scale. The interested readers are referred to [23,11,12] for some reviews on AP methods. Besides being AP, the 
proposed methods will be PP and produce non-negative approximation for the third-order nonlinear susceptibility χ . The 
variable χ being non-negative can ensure the energy being nonnegative. Whenever possible, we also want to achieve an 
energy stability property of the proposed methods.

For the proposed methods, we first discretize in space using nodal DG methods that allow arbitrary spatial accuracy. The 
nodal DG spatial discretizations provide an efficient and natural way to handle the nonlinearity and to (potentially) preserve 
the positivity of χ . They equivalently can be rewritten in an interpolatory weak form [14,8], that are more compact and will 
be used in most part of the paper. For the semi-discrete in space schemes, we further discretize in time. We first introduce 
first order temporal discretizations, that involve either forward or backward Euler methods for the Maxwell part, and the 
backward Euler method for discretizing the ADEs. We prove that the resulting fully discrete schemes are simultaneously AP 
and PP, and moreover they satisfy the energy stability property.

Even though possessing theoretically desirable properties, the first order in time methods, as expected, are too dissipative 
to be computationally efficient to simulate wave propagation (see numerical results in Section 6). To improve the accuracy 
and especially the dispersion property, we then propose several second order temporal discretizations. The resulting fully 
discrete schemes are all AP and PP, with one also being energy stable. In these methods, second order symplectic time 
integrators, including the staggered leapfrog and implicit trapezoidal methods are applied to the non-stiff Maxwell part (see 
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equations (2.1a)-(2.1b)). For the stiff part of the ADEs that evolves the third-order nonlinear susceptibility χ (see equation 
(2.1d)), a novel modified exponential time integrator is proposed. This is inspired by the work in [9] and is based on a 
suitably designed O (�t2)-perturbed form of the stiff equation. This modified exponential time integrator is the key for 
the resulting schemes to be simultaneously AP and PP. For the non-stiff part of the ADEs (see equations (2.1e)-(2.1f)) that 
models the linear Lorentz dispersion effect, implicit trapezoidal time integrator is applied. If the strategies described above 
are coupled with the constitutive law (2.1c) directly, the resulting second order fully discrete methods will be AP and PP. 
In order to ultimately get a second order in time method that is AP and PP and additionally satisfies energy stability, we 
also propose a nontrivial second order energy-based numerical approximation to the constitutive law (2.1c). Though extra 
computational effort is needed (see Sections 5.6.2 and 6.2.2), this reformulation leads to provable energy stability, which can 
not be achieved by directly imposing the constitutive law. We want to point out that the temporal discretization strategies 
introduced in this work together with the energy-based numerical constitutive relation can be coupled with other spatial 
discretizations, such as finite difference methods, to achieve AP and PP properties, and possibly also the energy stability.

To put our work into perspective, we briefly review some recent developments for AP and PP schemes of second order 
accuracy for nonlinear optical models and some other problems. In [7], semi-implicit Runge-Kutta (RK) schemes with a 
correction step preserving the positivity and the steady state are proposed for a shallow water model. In [22] and [21], 
implicit-explicit RK (IMEX-RK) schemes with a correction step preserving the positivity and the asymptotic limit are pro-
posed for the Kerr-Debye model ([22]) and for the stiff BGK model ([21]). Both the semi-implicit RK schemes and the second 
order accurate IMEX-RK schemes above start with a convex combination of first order schemes with AP and PP properties. 
Due to the fact that there is no second or higher order implicit strong stability preserving (SSP) RK schemes [18], an addi-
tional correction step is introduced, based on the Fréchet derivative of the stiff part, to achieve the second order accuracy 
while keeping the PP property. In [13] and [20], AP and PP exponential time integrators are designed for some stiff kinetic 
model, by utilizing the structure of the collision operator of the underlying model. One can see Section 5.2.3 for more 
comments and discussions.

The rest of the paper is organized as follows. In Section 2, the physical model is introduced, and positivity preservation 
property and energy stability are derived. In Section 3, the nodal DG spatial discretization is formulated, together with 
its equivalent interpolatory form. We then define first order temporal discretizations in Section 4, and show the resulting 
semi-implicit or implicit fully discrete scheme is AP, PP and energy stable. In Section 5, the formulation of the second order 
in time AP and PP schemes are presented. A modified second order exponential time integrator is designed for the stiff 
part of the ADEs, and this is the key to achieve the AP and PP property of the resulting schemes. To further achieve energy 
stability, an energy-based numerical constitutive relation is designed. The AP, PP and possibly the energy stable properties 
are established, and we also discuss some aspects of the nonlinear algebraic solvers. The performance of the proposed 
schemes are numerically demonstrated in Section 6, which is followed by concluding remarks and future work in Section 7.

2. The model

In this paper, we consider the one dimensional Kerr-Debye model with the linear Lorentz dispersion represented by the 
following first order system.

μ0∂tH = ∂xE, (2.1a)

∂tD = ∂xH, (2.1b)

D = ǫ0 ((ǫ∞ + aχ)E + P ) , (2.1c)

∂tχ = −
1

ε
(χ − E2), (2.1d)

∂t P = J , (2.1e)

∂t J +
1

τ
J + ω2

0 P = ω2
pE, (2.1f)

in 	 × [0, T ], where E is the electric field, H is the magnetic field, D is the electric displacement, χ is the third-order 
nonlinear susceptibility, P is the linear polarization due to the Lorentz dispersion, and J is the linear polarization current 
density. The parameters are the electric permittivity of free space ǫ0 , the relative electric permittivity in the limit of the 
infinite frequency ǫ∞ , the magnetic permeability of free space μ0 , the resonance frequency of the medium ω0 , the plasma 
frequency of the medium ωp , a damping constant τ , and a relaxation time ε. The equations (2.1a)-(2.1b) are the Maxwell’s 
equations, (2.1c) is the constitutive law, while (2.1d)-(2.1f) are auxiliary differential equations (ADEs) modeling the evolution 
in time of the nonlinear susceptibility and linear polarization. The system (2.1) will be referred to as the Kerr-Debye-Lorentz 
model.

Formally, as the relaxation time ε goes to 0, (2.1d) will become χ = E2 , and we will get the asymptotic limit of the 
system (2.1),

μ0∂tH = ∂xE, (2.2a)
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∂tD = ∂xH, (2.2b)

D = ǫ0
(
(ǫ∞ + aE2)E + P

)
, (2.2c)

∂t P = J , (2.2d)

∂t J +
1

τ
J + ω2

0 P = ω2
pE, (2.2e)

which is the Kerr model with the linear Lorentz dispersion. Unlike in the Kerr-Debye-Lorentz model, the Kerr effect in the 
limiting Kerr-Lorentz model (2.2) is modeled as an instantaneous response.

Below we gather some important properties of systems (2.1) and (2.2).

Theorem 2.1 (Positivity preserving property of the susceptibility χ ). For the system (2.1), suppose χ(x, 0) ≥ 0, then χ(x, t) ≥ 0, 
∀t ≥ 0.

Proof. From (2.1d), χ(x, t) = e− t
ε χ(x, 0) +

∫ t

0 e
τ−t
ε E(x, τ )2dτ . Hence, the theorem holds. ✷

Theorem 2.2 (Energy stability for system (2.1)). Under periodic boundary conditions, the energy for (2.1)

E(t) =
1

2

∫

	

(
ǫ0(ǫ∞ + aχ)E2 + μ0H

2 +
ǫ0a

2
χ2 +

ǫ0ω
2
0

ω2
p

P2 +
ǫ0

ω2
p

J2

)
dx (2.3)

satisfies the following relation,

dE(t)

dt
= −

∫

	

(
ǫ0a

2ε
(χ − E2)2 +

ǫ0

τω2
p

J2

)
dx ≤ 0. (2.4)

Proof. Multiply H to (2.1a), E to (2.1b), (χ − E2) to (2.1d), P to (2.1e) and J to (2.1f), then integrate in x and sum the 
resulting equations up with suitable weights. Based on (2.1c), the energy stability (2.4) follows. ✷

Remark 2.3. The fact χ ≥ 0 guarantees the energy E is non-negative. Hence, (2.4) gives the energy stability of (2.1).

Theorem 2.4 (Energy stability for system (2.2)). Under periodic boundary conditions, the energy for (2.2)

EKerr(t) =
1

2

∫

	

(
ǫ0ǫ∞E2 +

3ǫ0a

2
E4 + μ0H

2 +
ǫ0ω

2
0

ω2
p

P2 +
ǫ0

ω2
p

J2

)
dx (2.5)

satisfies the following relation

dEKerr(t)

dt
= −

ǫ0

τω2
p

∫

	

J2dx ≤ 0. (2.6)

Proof. Multiply H to (2.2a), E to (2.2b), P to (2.2d) and J to (2.2e), then integrate in x and sum the resulting equations up 
with suitable weights. Based on (2.2c), the energy stability is obtained. ✷

Remark 2.5. Formally, as ε → 0, we have χ → E2 and E → EKerr .

The goal of this paper is to design efficient numerical schemes for the Kerr-Debye-Lorentz system (2.1) that can maintain 
the important physical properties discussed above, such as the asymptotic limit when ε → 0, positivity of χ and energy sta-
bility. We will discuss the spatial discretization first in Section 3, followed by first and second order temporal discretizations 
in Sections 4 and 5.

3. Semi-discrete DG spatial discretization

In this section, we formulate DG spatial discretizations for system (2.1). The nonlinearity is treated via the nodal form, 
or equivalently the interpolatory form, of the DG method. Other spatial discretizations may also be viable, such as finite 
difference methods, which will be investigated in a future work.

We assume the computational domain is 	 = [xmin, xmax], with the mesh defined as xmin = x 1
2

< x 3
2

< · · · < xNx+ 1
2

=

xmax . Let I j = [x j− 1
2
, x j+ 1

2
], x j = 1

2
(x j− 1

2
+ x j+ 1

2
), �x j = x j+ 1

2
− x j− 1

2
, for 1 ≤ j ≤ Nx , and h = min

Nx

j=1 �x j . The mesh is 
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assumed to be quasi-uniform, namely, there exists a positive constant δ > 0, such that h/�x j ≤ δ, ∀ j as the mesh is refined. 
We use the following discrete space

U K
h =

{
p ∈ L2(	x) : p|I j ∈ P K (I j),∀ j

}
,

where P K (I j) is the set of polynomials with degree at most K on I j . The vector version of the space is denoted as

(U K
h )m =

{
p = (p1, . . . , pm)T : pl ∈ U K

h ,∀1 ≤ l ≤m
}

.

Let v(x±) = lim�x→0± v(x + �x), v±
j± 1

2

= v(x±
j± 1

2

), and the average and jump be {v} j+ 1
2

= 1
2
(v+

j+ 1
2

+ v−
j+ 1

2

) and [v] j+ 1
2

=

v+
j+ 1

2

− v−
j+ 1

2

.

To introduce the nodal DG formulation, we consider the Gaussian-Legendre quadrature points {ξk}Kk=0
on [−1, 1] with 

the weights {ω̂k}Kk=0
, satisfying 

∑K
k=0 ω̂k = 2. Let x jk = x j +

�x j

2
ξk , and the associated interpolant is L jk(x) ∈ U K

h
, satisfying

L jk(xil) = δi jδkl,

where δi j is the Kronecker delta. The collection of {L jk}Nx,K
j=1,k=0

forms a set of Lagrange basis of U K
h
. For any p ∈ U K

h
, it can 

be expressed as p(x) =
∑Nx

j=1

∑K
k=0 p jkL jk(x), where p jk = p(x jk). Such expansion will be used throughout the paper.

The semi-discrete nodal DG method for system (2.1) is: we look for uh = (Hh, Dh, Eh, Ph, Jh,χh)
T , with uh(x, t) =∑Nx

j=1

∑K
k=0 ujk(t)L jk(x) and ujk =

(
H jk, D jk, E jk, P jk, J jk,χ jk

)T
such that

�x j

2
μ0ω̂k∂tH jk +

�x j

2

K∑

l=0

ω̂lE jl∂xL jk(x jl) − (Êh) j+ 1
2

(
L jk

)−
j+ 1

2
+ (Êh) j− 1

2

(
L jk

)+
j− 1

2
= 0, (3.7a)

�x j

2
ω̂k∂tD jk +

�x j

2

K∑

l=0

ω̂lH jl∂xL jk(x jl) − (H̃h) j+ 1
2

(
L jk

)−
j+ 1

2
+ (H̃h) j− 1

2

(
L jk

)+
j− 1

2
= 0, (3.7b)

D jk = ǫ0
(
(ǫ∞ + aχ jk)E jk + P jk

)
, (3.7c)

∂tχ jk = −
1

ε

(
χ jk − E2

jk

)
, (3.7d)

∂t P jk = J jk, (3.7e)

∂t J jk +
1

τ
J jk + ω2

0 P jk = ω2
pE jk, k = 0,1, · · · K , j = 1,2, · · ·Nx, (3.7f)

where Êh and H̃h are numerical fluxes, which can be chosen as one of the following,

H̃h = H+
h

and Êh = E−
h
, (alternating flux 1) (3.8a)

H̃h = H−
h

and Êh = E+
h
, (alternating flux 2) (3.8b)

H̃h = {Hh} +
1

2

√
ǫ0ǫ∞
μ0

[Eh] and Êh = {Eh} +
1

2

√
μ0

ǫ0ǫ∞
[Hh], (upwind flux). (3.8c)

The “upwind” flux in (3.8c) is actually the upwind flux for the Maxwell’s equations in free space. Without confusion, we 
will refer to it as the upwind flux in this paper.

The nodal DG method above can be rewritten more compactly in an interpolatory weak form [14,8]. Define a 
local interpolation operator I

j

h
: H1(I j) → P K (I j) as (I

j

h
u)(x) =

∑K
k=0 u(x jk)L jk(x), and the global one Ih : H1

h
(	) ={

p(x) : p(x)|I j ∈ H1(I j),∀1 ≤ j ≤ Nx

}
→ U K

h
as Ih

∣∣
I j

= I
j

h
, ∀1 ≤ j ≤ Nx . The nodal DG method (3.7) is equivalent to: we 

look for uh = (Hh, Dh, Eh, Ph, Jh,χh)
T ∈ (Uk

h
)6 such that for any φ, ϕ ∈ U K

h
and 1 ≤ j ≤ Nx:

μ0

∫

I j

∂tHhφdx+
∫

I j

Eh∂xφdx− (Êh) j+ 1
2
φ−

j+ 1
2

+ (Êh) j− 1
2
φ+

j− 1
2

= 0, (3.9a)

∫

I j

∂tDhϕdx+
∫

I j

Hh∂xϕdx− (H̃h) j+ 1
2
ϕ−

j+ 1
2

+ (H̃h) j− 1
2
ϕ+

j− 1
2

= 0, (3.9b)

Dh = ǫ0 (ǫ∞Eh + aIh (χhEh)) + Ph) , (3.9c)

∂tχh = −
1

ε

(
χh − Ih(E

2
h)
)
, (3.9d)
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∂t Ph = Jh, (3.9e)

∂t Jh +
1

τ
Jh + ω2

0 Ph = ω2
pEh. (3.9f)

The equivalency can be established by the exactness of the K +1 points Gaussian quadrature for polynomials with degree 
up to 2K + 1, which is stated in the following lemma.

Lemma 3.1. For any v ∈ P2K+1(I j), the K + 1 points Gaussian quadrature is exact, namely,

∫

I j

v(x)dx =
�x j

2

K∑

k=0

ω̂kv(x jk). (3.10)

The following “commutative property” of the interpolation operator will be used later in the analysis.

Lemma 3.2. For any v1, v2, v3 ∈ U K
h
, there holds

∫

	

(
Ih(v1v2)

)
(x)v3(x)dx =

∫

	

(
Ih(v2v3)

)
(x)v1(x)dx. (3.11)

Proof. Note that Ih(v1v2) ∈ U K
h

and Ih(v2v3) ∈ U K
h
, based on Lemma 3.1, we have

∫

	

(
Ih(v1v2)

)
(x)v3(x)dx =

Nx∑

j=1

K∑

k

�x j

2
ω̂kv1(x jk)v2(x jk)v3(x jk) =

∫

	

(
Ih(v2v3)

)
(x)v1(x)dx. ✷ (3.12)

Standard inverse inequalities for polynomial spaces will also be used frequently: there exist constants C inv and Ĉ inv , 
dependent of K , such that

�x jw(x j± 1
2
)2 ≤ C inv ||w||2

L2(I j)
, ∀w ∈ P K (I j), (3.13a)

�x2j ||wx||2L2(I j) ≤ Ĉ inv ||w||2
L2(I j)

, ∀w ∈ P K (I j). (3.13b)

Here || · ||L2(I j) denotes the standard L2 norm on I j . It is easy to see C inv = 1 when K = 0.

4. First order in time AP, PP and energy stable fully discrete schemes

In this section, we will further introduce first order temporal discretizations to get fully discrete schemes. Particularly, 
we apply the forward or backward Euler method to the Maxwell part and the backward Euler method to the ADEs. The 
resulting fully discrete schemes are called the semi-implicit first order scheme (SI1) and the fully implicit first order scheme 
(FI1), respectively, and they will be shown to be AP, PP, and satisfy energy stability.

For simplicity, we present the fully discrete scheme in the interpolatory form. The semi-implicit scheme (SI1) is defined 
as follows. Given un

h
∈ (U K

h
)6 at tn , we look for un+1

h
∈ (U K

h
)6 at tn+1 = tn + �t , such that for any φ, ϕ ∈ U K

h
and 1 ≤ j ≤ Nx ,

∫

I j

μ0

Hn+1
h

− Hn
h

�t
φdx+

∫

I j

Enh∂xφdx− (Ên
h
) j+ 1

2
φ−

j+ 1
2

+ (Ên
h
) j− 1

2
φ+

j− 1
2

= 0, (4.14a)

∫

I j

Dn+1
h

− Dn
h

�t
ϕdx+

∫

I j

Hn
h∂xϕdx− (H̃n

h
) j+ 1

2
ϕ−

j+ 1
2

+ (H̃n
h
) j− 1

2
ϕ+

j− 1
2

= 0, (4.14b)

Dn+1
h

= ǫ0

(
ǫ∞En+1

h
+ aIh(χ

n+1
h

En+1
h

) + Pn+1
h

)
, (4.14c)

χn+1
h

− χn
h

�t
= −

1

ε

(
χn+1
h

− Ih((E
n+1
h

)2)
)

, (4.14d)

Pn+1
h

− Pn
h

�t
= Jn+1

h
, (4.14e)

Jn+1
h

− Jn
h

�t
+

1

τ
Jn+1
h

+ ω2
0 P

n+1
h

= ω2
pE

n+1
h

, (4.14f)
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where the numerical fluxes are chosen as one of the options in (3.8). Similarly, the fully implicit scheme (I1) can be defined 
by coupling

∫

I j

μ0

Hn+1
h

− Hn
h

�t
φdx+

∫

I j

En+1
h

∂xφdx− (
̂
En+1
h

) j+ 1
2
φ−

j+ 1
2

+ (
̂
En+1
h

) j− 1
2
φ+

j− 1
2

= 0, (4.15a)

∫

I j

Dn+1
h

− Dn
h

�t
ϕdx+

∫

I j

Hn+1
h

∂xϕdx− (
˜
Hn+1

h
) j+ 1

2
ϕ−

j+ 1
2

+ (
˜
Hn+1

h
) j− 1

2
ϕ+

j− 1
2

= 0, (4.15b)

with (4.14c)-(4.14f).

4.1. AP and PP properties

As ε goes to 0, formally, we can get the limiting scheme of the semi-implicit scheme (4.14): given vn
h

= (Hn
h
, Dn

h
, En

h
,

Pn
h
, Jn

h
)T ∈ (U K

h
)5 , look for vn+1

h
=
(
Hn+1

h
, Dn+1

h
, En+1

h
, Pn+1

h
, Jn+1

h

)T
∈ (U K

h
)5 such that for any φ, ϕ ∈ U K

h
and 1 ≤ j ≤ Nx ,

∫

I j

μ0

Hn+1
h

− Hn
h

�t
φdx+

(
Enh, ∂xφ

)
− (̂En

h
)
j+ 1

2
φ−

j+ 1
2

+ (̂En
h
)
j− 1

2
φ+

j− 1
2

= 0, (4.16a)

∫

I j

Dn+1
h

− Dn
h

�t
ϕdx+

(
Hn

h, ∂xϕ
)

− (̃Hn
h
)
j+ 1

2
ϕ−

j+ 1
2

+ (̃Hn
h
)
j− 1

2
ϕ+

j− 1
2

= 0, (4.16b)

Dn+1
h

= ǫ0

(
ǫ∞En+1

h
+ aIh((E

n+1
h

)3) + Pn+1
h

)
, (4.16c)

Pn+1
h

− Pn
h

�t
= Jn+1

h
, (4.16d)

Jn+1
h

− Jn
h

�t
+

1

τ
Jn+1
h

+ ω2
0 P

n+1
h

= ω2
pE

n+1
h

. (4.16e)

Similarly, the limiting scheme of the fully implicit scheme is (4.15) coupled with (4.16c)-(4.16e). Both limiting schemes are 
first order in time nodal DG methods for the Kerr model with the Lorentz dispersion in (2.2). This shows the proposed 
schemes are formally AP.

The following theorem confirms the PP property.

Theorem 4.1. Both first order in time fully discrete schemes are PP, in the sense that if χn
jk

≥ 0, then χn+1
jk

≥ 0, for any 1 ≤ j ≤
Nx, 0 ≤ k ≤ K , and ∀n ≥ 0.

Proof. Note that (4.14d) is equivalent to

χn+1
jk

− χn
jk

�t
= −

1

ε

(
χn+1

jk
− (En+1

jk
)2
)

, 1 ≤ j ≤ Nx, 0 ≤ k ≤ K . (4.17)

This leads to χn+1
jk

= ε
ε+�t

χn
jk

+ �t
ε+�t

(En+1
jk

)2 ≥ min
(
χn

jk
, (En+1

jk
)2
)
. From here, one can conclude the PP property. ✷

4.2. Energy stability

We now state and perform the energy stability analysis for the proposed first order fully discrete schemes. The proof can 
be found in Appendix A.

Theorem 4.2. Given T > 0. Assume χ(x, 0) ≥ 0 and periodic boundary conditions, for the proposed first order fully discrete schemes, 
we introduce

E
n
h,1 =

1

2

(
ǫ0ǫ∞||Enh||

2 + aǫ0
(
χn
h , Ih((E

n
h)

2))
)
+ μ0||Hn

h||
2 +

ǫ0a

2
||χn

h ||2 +
ǫ0ω

2
0

ω2
p

||Pn
h ||

2 +
ǫ0

ω2
p

|| Jnh ||
2

)
, (4.18)

then En
h,1

≥ 0, ∀n, and hence it defines a discrete energy. Moreover, the following energy stability results hold.
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1.) For the semi-implicit scheme (4.14), with either the upwind or alternating flux defined in (3.8), we have En
h,1

≤ eC
′T E0

h,1
, ∀n ≤ T

�t
, 

under the time step condition �t ≤ Ch2 . Here C can be taken as any fixed generic constant, while C ′ is a constant dependent of 
K , ǫ0 , ǫ∞ , μ0 and the quasi-uniform mesh parameter δ. Furthermore, when K = 0 with the upwind flux, the scheme satisfies a 
strong energy stability result, namely,

E
n+1
h,1

≤ E
n
h,1, ∀n ≥ 0,

under a hyperbolic type time step condition �t ≤
√

μ0ǫ0ǫ∞
4δ

h.

2.) For the fully implicit scheme (4.15), with either the upwind or alternating flux defined in (3.8), the strong energy stability holds, 
namely, En+1

h,1
≤ E

n
h,1

, ∀n ≥ 0 for any �t > 0. In other words, the scheme (4.15) is unconditionally energy stable.

Here in (4.18), || · || is the L2 norm for L2(	), induced from the standard L2 inner product (·, ·).

In summary, the first order semi-implicit scheme SI1 in (4.14) is AP, PP and energy stable under a suitable CFL condition. 
The first order fully implicit scheme FI1 in (4.15) is AP, PP, and unconditionally energy stable.

5. Second order in time AP and PP fully discrete schemes

In this section, we propose several second order AP and PP schemes for (2.1). All these schemes include three main 
ingredients:

1. the staggered leapfrog or trapezoidal nodal DG method for the Maxwell (also the PDE) part (2.1a)-(2.1b);
2. a modified exponential time integrator, applied to the stiff part of the ADEs, namely (2.1d), coupled with the trapezoidal 

time integrator, applied to (2.1e)-(2.1f), the non-stiff part of the ADEs;
3. an algebra-based or energy-based numerical constitutive law approximating the relation (2.1c).

For the PDE part, we use the second order staggered leapfrog or trapezoidal temporal discretization coupled with the 
nodal DG spatial discretization. To obtain AP and PP properties, we design a new modified exponential time integrator for 
the stiff part (2.1d), combined with the trapezoidal time integrator for (2.1e)-(2.1f), the non-stiff part of the ADEs. For the 
constitutive law, two different approximations are considered. The first one is based on the algebraic relation (2.1c). This 
algebra-based approximation is straightforward, yet it does not lead to a provable energy stability. In order to achieve such 
provable result, we propose an energy-based numerical constitutive law.

As all the proposed schemes employ a modified exponential time integrator for (2.1f), we call them the modified expo-
nential leapfrog (or trapezoidal) method with an algebra-based (or energy-based) approximation for the constitutive law. 
Particularly, we consider three methods: the modified exponential trapezoidal method with algebra-based numerical con-
stitutive law (META), the modified exponential leapfrog method with algebra-based numerical constitutive law (MELA), and 
the modified exponential leapfrog method with energy-based numerical constitutive law (MELE). All three schemes preserve 
the correct asymptotic limit as ε → 0 and the positivity of χ . The MELE scheme can further be proved to preserve an en-
ergy relation on the discrete level. In actual numerical implementations, all three schemes require to solve some nonlinear 
algebraic equations, for which Newton-type nonlinear solvers are used. These solvers performs relatively more robust for 
the algebra-based schemes (META and MELA). When the MELE scheme is applied to some examples, we observe that a 
good initial guess for the Newton-type solver is crucial to capture the physically relevant solution (see Section 5.6 for more 
details). We do not consider the method that combines the trapezoidal method for the PDE part and the energy-based nu-
merical constitutive law, as this method is observed to be too sensitive to the initial guesses in the Newton solvers. In the 
following, we will discuss each ingredient of the proposed methods, see Sections 5.1-5.3. The PP property is established in 
Section 5.2.1 and the AP property is in Section 5.4. In Section 5.5, energy stability result is established for the MELE scheme. 
In Section 5.6, we discuss the solvers for the nonlinear algebraic equations resulted from the proposed schemes.

5.1. Discretization of the Maxwell part

For the Maxwell part (2.1a)-(2.1b), we apply the second order staggered leapfrog or trapezoidal time integrator. With the 
leapfrog method, the fully discrete scheme is: given un

h
∈ (U K

h
)6 , we look for un+1

h
∈ (U K

h
)6 , such that for any φ, ϕ ∈ U K

h
and 

1 ≤ j ≤ Nx ,

μ0

∫

I j

H
n+ 1

2

h
− Hn

h

�t/2
φdx+

∫

I j

Enh∂xφdx− (̂En
h
)
j+ 1

2
φ−

j+ 1
2

+ (̂En
h
)
j− 1

2
φ+

j− 1
2

= 0, (5.19a)

∫

I j

Dn+1
h

− Dn
h

�t
ϕdx+

∫

I j

H
n+ 1

2

h
∂xϕdx−

˜
(H

n+ 1
2

h
)
j+ 1

2
ϕ−

j+ 1
2

+
˜

(H
n+ 1

2

h
)
j− 1

2
ϕ+

j− 1
2

= 0, (5.19b)
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μ0

∫

I j

Hn+1
h

− H
n+ 1

2

h

�t/2
ψdx+

∫

I j

En+1
h

∂xψdx− ̂
(En+1

h
)
j+ 1

2
ψ−

j+ 1
2

+ ̂
(En+1

h
)
j− 1

2
ψ+

j− 1
2

= 0, (5.19c)

where Ên
h
and 

˜
H

n+ 1
2

h
are numerical fluxes. Even though both the alternating and upwind fluxes in (3.8) can be used here, 

we choose to only work with the alternating flux due to the consideration for cost efficiency. When the upwind flux is 

applied in the DG discretization with the leapfrog scheme in time, the term 1
2
(En+1

h
+ En

h
) is needed to evaluate 

˜
H

n+ 1
2

h
. This 

will lead to a globally coupled nonlinear system to solve. Meanwhile, the time step condition of the leapfrog scheme for 
numerical stability is restricted by a CFL condition. Hence the leapfrog scheme with the upwind DG method in space is 
computationally much more expensive than that with the alternating flux. With the alternating flux, the nonlinear system 
is defined locally at each nodal point x jk and this results in good parallel efficiency.

With the trapezoidal method, which is implicit, the fully discrete scheme is: given un
h

∈ (U K
h

)6 , we look for un+1
h

∈ (U K
h

)6 , 
such that for any φ, ϕ ∈ U K

h
and 1 ≤ j ≤ Nx ,

μ0

∫

I j

Hn+1
h

− Hn
h

�t
φdx+

∫

I j

En
h
+ En+1

h

2
∂xφdx−

̂(
En+1
h

+ En
h

2

)

j+ 1
2

φ−
j+ 1

2

+
̂(

En+1
h

+ En
h

2

)

j− 1
2

φ+
j− 1

2

= 0, (5.20a)

∫

I j

Dn+1
h

− Dn
h

�t
ϕdx+

∫

I j

Hn
h
+ Hn+1

h

2
∂xϕdx−

⎛
⎝

˜
Hn

h
+ Hn+1

h

2

⎞
⎠

j+ 1
2

ϕ−
j+ 1

2

+

⎛
⎝

˜
Hn

h
+ Hn+1

h

2

⎞
⎠

j− 1
2

ϕ+
j− 1

2

= 0. (5.20b)

Both the alternating and upwind fluxes in (3.8) are considered. Although a global nonlinear system needs to be solved, this 
fully implicit scheme allows larger time step size.

5.2. Discretization of the ADE part: a modified exponential time integrator

Our second order approximation for the ADE part (2.1d)-(2.1f) is given as follows.

(
1

2
+

1

2
e− �t

ε +
�t

2ε
e− �t

2ε )χn+1
h

= e− �t
ε χn

h +
1

2
(1− e

−�t
ε )Ih

(
(En+1

h
)2
)

+
�t

2ε
e− �t

2ε Ih

(
(Enh)

2
)

, (5.21a)

Pn+1
h

− Pn
h

�t
=

1

2

(
Jn+1
h

+ Jnh

)
, (5.21b)

Jn+1
h

− Jn
h

�t
= −

1

2

(
1

τ
( Jn+1

h
+ Jnh) + ω2

0(P
n+1
h

+ Pn
h) − ω2

p(E
n+1
h

+ Enh)

)
. (5.21c)

Note that the standard trapezoidal time integrator is applied in (5.21b)-(5.21c), while a modified exponential time integrator 
is proposed in (5.21a). This new exponential integrator is to ensure that our schemes simultaneously preserve the correct 
asymptotic limit as ε → 0 and the positivity of χ .

Next in Section 5.2.1 we will elaborate how (5.21a) is derived. We then extend the underlying idea to more general 
ODE systems in Section 5.2.2. Additional comments and discussions will be made in Section 5.2.3 to further understand the 
proposed strategy.

5.2.1. Derivation of the modified exponential time integrator in (5.21a)
There are two steps to derive (5.21a): (i) modify the ODE (2.1d), and (ii) discretize the modified ODE to preserve the 

correct asymptotic limit and the positivity of χ . Each step is second order accurate. The modification step is inspired by [9]. 
The AP and PP properties of the resulting discretization are due to the positivity of exponential functions as well as their 
fast decay property (surely when the functions decay).

The following estimate will be used repeatedly. Here the big-O notation is with respect to �t .

∣∣∣∣
�t

ε
e− �t

2ε − (1 − e
−�t
ε )

∣∣∣∣=

∣∣∣∣∣∣
�t

ε
e− �t

2ε −
�t∫

0

1

ε
e

−τ
ǫ dτ

∣∣∣∣∣∣
= O (�t3). (5.22)

The spatial dependence of the function is irrelevant, and it is suppressed in the following derivation. As the first step, we 
modify the ODE. Note that the exact solution of (2.1d) satisfies

χ(tn+1) = e− �t
ε χ(tn) +

�t∫

0

1

ε
e

τ−�t
ε
(
E(tn + τ )

)2
dτ = e− �t

ε χ(tn) +
�t

ε
e− �t

2ε

(
E(tn+ 1

2 )
)2

+ O (�t3), (5.23)
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or equivalently,

χ(tn+1) − χ(tn)

�t
=

e− �t
ε − 1

�t
χ(tn) +

1

ε
e− �t

2ε

(
E(tn+ 1

2 )
)2

+ O (�t2). (5.24)

Here tn+ 1
2 = tn + �t

2
. With the Taylor series expansion, (5.24) becomes

χ(tn+1) − χ(tn)

�t
=

e− �t
ε − 1

�t
χ(tn) +

1

ε
e− �t

2ε

(
E(tn+ 1

2 )
)2

+ O (�t2),

∂tχ(tn+ 1
2 ) =

e
−�t
ε − 1

�t

(
χ(tn+ 1

2 ) −
�t

2
∂tχ(tn+ 1

2 )

)
+

1

ε
e− �t

2ε

(
E(tn+ 1

2 )
)2

+ O (�t2),

(
1

2
+

1

2
e− �t

ε )∂tχ(tn+ 1
2 ) =

e− �t
ε − 1

�t
χ(tn+ 1

2 ) +
1

ε
e− �t

2ε

(
E(tn+ 1

2 )
)2

+ O (�t2). (5.25)

The equation (5.25) can be regarded as a O (�t2) perturbation to the original ODE (2.1d). Next we want to discretize the 
modified ODE (5.25) with a second order approximation. To achieve this, applying central differencings to each term, we get

(
1

2
+

1

2
e− �t

ε )

(
χ(tn+1) − χ(tn)

�t

)
=

(
e− �t

ε − 1

�t

)
χ(tn+1) + χ(tn)

2
+

1

ε
e− �t

2ε

(
E(tn+1)

)2 +
(
E(tn)

)2

2
+ O (�t2),

(
1

2
+

1

2
e

−�t
ε +

1− e− �t
ε

2
)χ(tn+1) = e− �t

ε χ(tn) +
�t

2ε
e− �t

2ε
(
E(tn+1)

)2 +
�t

2ε
e− �t

2ε
(
E(tn)

)2 + O (�t3). (5.26)

We then apply (5.22) selectively to some coefficients in (5.26), and reach

(
1

2
+

1

2
e

−�t
ε +

�t

2ε
e− �t

2ε )χ(tn+1) = e− �t
ε χ(tn) +

1− e− �t
ε

2

(
E(tn+1)

)2 +
�t

2ε
e− �t

2ε
(
E(tn)

)2 + O (�t3). (5.27)

The derivation above justifies the second order discretization (5.21a) for the equation (2.1d).
As ε → 0, (5.21a) becomes χn+1

h
= Ih((E

n+1
h

)2), or equivalently, χn+1
jk

→ (En+1
jk

)2, ∀ j, k. Hence, the correct asymptotic 
limit is captured. We will state the asymptotic preserving property for the entire algorithm in Section 5.4. The modified 
exponential time integrator also ensures the PP property of χh .

Theorem 5.1. If χn
jk

≥ 0, then χn+1
jk

≥ 0.

Proof. Equivalent to (5.21a), we have

(
1

2
+

1

2
e− �t

ε +
�t

2ε
e− �t

2ε )χn+1
jk

= e− �t
ε χn

jk +
1

2
(1− e

−�t
ε )(En+1

jk
)2 +

�t

2ε
e− �t

2ε (Enjk)
2,

where e− �t
ε > 0, 1

2
(1 − e

−�t
ε ) > 0, and �t

2ε e
− �t

2ε > 0. One can then conclude χn+1
jk

≥ 0 provided that χn
jk

≥ 0. ✷

Remark 5.2. If the exponential time integrator is defined based on (5.26) instead of (5.27), it will lead to χn+1
h

= 0 as 

ε → 0, an inconsistent discretization for χ = E2 . The corresponding numerical method will no longer be AP, though it is 
still positivity-preserving.

5.2.2. Extension to general ODE systems

The underlying idea of the modified exponential time integrator in Section 5.2 indeed can be applied to more general 
ODE systems to get second order AP and PP methods. Consider an ODE system of the following form,

du

dt
= f (u, v, t), (5.28a)

dv

dt
= −

1

ε
(v − g(u, v, t)), (5.28b)

where u ∈ Rn . If g(u, v, t) ≥ 0, the exact solution v(t) = e− t
ε v(0) +

∫ t

0
e

τ−t
ε

ε g(u, v, τ )dτ is also non-negative. Moreover, as 
ε → 0, v formally goes to g(u, v, t).

Following the similar idea in Section 5.2, a second order approximation for (5.28b) is given as follows,

(
1

2
+

1

2
e

−�t
ε +

�t

2ε
e− �t

2ε )vn+1 = e− �t
ε vn +

1

2
(1− e− �t

ε )g(un+1, vn+1, tn+1) +
�t

2ε
e− �t

2ε g(un, vn, tn). (5.29)
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Just as in Theorem 5.1, for the numerical solution of (5.29), we can prove vn+1 ≥ 0 provided vn ≥ 0. Moreover, as ε → 0, 
vn+1 → g(un+1, vn+1, tn+1).

In general we can discretize (5.28a) using the trapezoidal method,

un+1 − un

�t
=

1

2

(
f (un, vn, tn) + f (un+1, vn+1, tn+1)

)
. (5.30)

When n = 2m and (5.28a) is of the following special form,

u = (u1,u2)
T , f (u, v, t) =

(
f 1(u2, t), f 2(u1, t)

)T
, with ui ∈ R

m, i = 1,2,

one can also apply the staggered leapfrog method and get

u
n+ 1

2
1 − un

1

�t/2
= f 1(u

n
2, t

n), (5.31a)

un+1
2 − un

2

�t
= f 2(u

n+ 1
2

1 , tn+ 1
2 ), (5.31b)

un+1
1 − u

n+ 1
2

1

�t/2
= f 1(u

n+1
2 , tn+1). (5.31c)

5.2.3. More discussions
Here we want to briefly compare our proposed strategy with some available AP and PP schemes of second order accuracy 

in the literature. In [7], semi-implicit Runge-Kutta (RK) schemes with a correction step preserving the positivity and the 
steady state are proposed for a shallow water model. In [22] and [21], implicit-explicit RK (IMEX-RK) schemes with a 
correction step preserving the positivity and the asymptotic limit are proposed for the Kerr-Debye model (a nonlinear 
hyperbolic system with stiff relaxation, [22]) and for the stiff BGK model ([21]). Either the semi-implicit RK schemes or the 
IMEX-RK schemes above start with a convex combination of first order schemes with AP and PP properties. Due to the fact 
that there is no second or higher order implicit strong stability preserving (SSP) RK schemes [18], an additional correction 
step is introduced, based on the Fréchet derivative of the stiff part, to achieve the second order accuracy while keeping the 
PP property.

What we propose here follows a different strategy. While the non-stiff part of the model is discretized using the leapfrog 
or trapezoidal method, for the stiff part, we design a modified exponential time integrator, with which second order accuracy 
is achieved together with the positivity and AP properties. On the implementation level, using the proposed strategy, a 
nonlinear algebraic equation needs to be solved once per time step. If the strategy in [22,21] is adapted to our present 
model, a nonlinear algebraic equation would need to be solved in each inner stage of the RK method and in the correction 
step.

We also want to comment that using our proposed strategy, the error in (5.22) is no longer negligible when �t/ε =
O (1). Hence one may observe some order reduction as many AP schemes encounter in this intermediate regime (also 
see numerical examples in Section 6). One way to alleviate this is to implement the modified exponential time integrator 
adaptively, namely, it is only used when some indicator implies the positivity of χ is lost at some nodal points. Elsewhere, 
one can use other second order discretizations which is only responsible for the AP property. With this, the modified 
exponential time integrator we proposed will be applied like a PP limiter. Such adaptive strategy is not explored in the 
present work.

5.3. Numerical constitutive laws

To impose the constitutive law (2.1c), we require

Dn+1
h

= ǫ0((ǫ∞ + aχn+1
h

)En+1
h

+ Pn+1
h

), (5.32)

and this will be referred to as the algebra-based numerical constitutive law. This strategy, though very natural, does not 
lead to a provable energy relation or energy stability. To achieve such a provable result, we also propose an energy-based 
numerical constitutive law:

(Dn+1
h

− Dn
h)(E

n+1
h

+ Enh) −
aǫ0�t

ε

(
χn+1
h

+ χn
h

2
− Ih

(
(En+1

h
)2 + (En

h
)2

2

))2

= ǫ0ǫ∞
(
(En+1

h
)2 − (Enh)

2
)

+
ǫ0a

2

(
(χn+1

h
)2 − (χn

h )2
)

+ ǫ0a
(
χn+1
h

Ih((E
n+1
h

)2) − χn
h Ih((E

n
h)

2)
)

+ ǫ0(P
n+1
h

− Pn
h)(E

n+1
h

+ Enh). (5.33)
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In order to understand this energy-based approximation, note that the exact solution satisfies

D(tn+1) − D(tn) = ǫ0ǫ∞
(
E(tn+1) − E(tn)

)
+ aǫ0

(
Y (tn+1) − Y (tn)

)
+ ǫ0

(
P (tn+1) − P (tn))

)
, (5.34)

where Y (t) = χ(t)E(t). Use Taylor series expansion, and assume E is nonzero for the time being, we have

Y (tn+1) − Y (tn) = Yt(t
n+ 1

2 )�t + O (�t3) =
χt E

2 + (χ E2)t

2E

∣∣∣
t=t

n+ 1
2
�t + O (�t3)

=
1

E(tn+1) + E(tn)

(
�t(χt E

2)(tn+ 1
2 ) + χ(tn+1)E2(tn+1) − χ(tn)E2(tn)

)
+ O (�t3). (5.35)

On the other hand, multiply χ − E2 to (2.1d) and use Taylor series expansion, we get

χt E
2
∣∣∣
t=t

n+ 1
2

=
(1
ε
(χ − E2)2 + χtχ

)∣∣∣
t=t

n+ 1
2

=
1

ε

(χ(tn+1) + χ(tn)

2
−

E2(tn+1) + E2(tn)

2

)2
+

1

2�t

(
χ2(tn+1) − χ2(tn)

)
+ O (�t2), (5.36)

hence (5.35) becomes

Y (tn+1) − Y (tn) =
1

E(tn+1) + E(tn)

(�t

ε

(χ(tn+1) + χ(tn)

2
−

E2(tn+1) + E2(tn)

2

)2

+
χ2(tn+1)

2
−

χ2(tn)

2
+ χ(tn+1)E2(tn+1) − χ(tn)E2(tn)

)
+ O (�t3). (5.37)

With (5.37) plugged into (5.34), one can find that the energy-based numerical constitutive law in (5.33) is simply a 
second order (in time) approximation for the relation (5.34) multiplied by E(tn+1) + E(tn). The reason to multiply (5.34) by 
E(tn+1) + E(tn) is for a more robust implementation of (5.33).

Now we are ready to define three fully discrete schemes. The META scheme is defined as (5.20), (5.21), and (5.32). The 
MELA scheme is defined as (5.19), (5.21), and (5.32). And the MELE scheme is defined as (5.19), (5.21), and (5.33).

5.4. AP property

When �t (and the spatial mesh) is fixed, e− �t
ε = O (εp) holds for any p > 0. Based on this and with dominance balance 

argument, one can formally derive

χn+1
h

− Ih((E
n+1
h

)2) = O (εp), ∀p > 0, ∀n ≥ 0, (5.38)

from the scheme (5.21a), provided En
h

= O (1).

With (5.38) and as ε → 0, the limiting scheme of the MELA scheme is formally defined as follows: given vn
h

=
(En

h
, Hn

h
, Dn

h
, χn

h
, Pn

h
)T ∈ (U K

h
)5 , we look for vn+1

h
∈ (U K

h
)5 satisfying (5.19), (5.21b)-(5.21c), and

Dn+1
h

= ǫ0
(
ǫ∞En+1

h
+ aIh

(
(En+1

h
)3
)

+ Pn+1
h

)
. (5.39)

And the limiting scheme of the META scheme is given by (5.20), (5.21b)-(5.21c), and (5.39). Both limiting schemes are 
second order approximations for the Kerr-Lorentz model in (2.2), and this shows the AP property of the proposed MELA and 
META schemes.

To study the limiting behavior of the MELE scheme, we need to take a closer look at the energy-based numerical consti-
tutive law (5.33) and examine the influence of the initial data. If the initial data satisfies

1

ε

(
χ0
h − Ih

(
(E0

h)
2
))

→ 0, ε → 0, (5.40)

then based on (5.38), the relation (5.33) will become

Dn+1
h

− Dn
h = ǫ0ǫ∞

(
En+1
h

− Enh

)
+

3ǫ0a

2
Ih

((
(En+1

h
)2 + (Enh)

2
)

(En+1
h

− Enh)
)

+ ǫ0(P
n+1
h

− Pn
h), (5.41)

as ε → 0, hence the limiting scheme of the MELE scheme is defined as (5.19), (5.21b)-(5.21c), and (5.41). This is a second 
order discretization of the Kerr-Lorentz model (2.2).

When the initial data is not as prepared as (5.40), then the term 1ε
(
χ0
h

− Ih
(
(E0

h
)2
))

in (5.33) will have a lingering effect 
to later time steps as ε → 0. This will either lead to order reduction or even inaccurate limiting behavior (see [27] for 
some discussion and analysis for a similar phenomenon in simulating multi-scale kinetic transport problems). To avoid this, 
one can modify the MELE scheme as follows: when n = 0, use the algebra-based numerical constitutive law (5.32); When 
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n ≥ 1, we switch back to the energy based constitutive law (5.33). This modified MELE scheme still enjoys the provable 
energy relation as the original MELE scheme (this will proved in next section), while its limiting scheme is given as (5.19), 
(5.21b)-(5.21c), together with (5.39) when n = 0 and (5.41) when n ≥ 1. This is still a consistent discretization of the limiting 
Kerr-Lorentz model.

5.5. Energy stability for the MELE scheme

Theorem 5.3. Assume χ(x, 0) ≥ 0 and periodic boundary conditions. For the proposed MELE scheme defined as (5.19), (5.21), and 
(5.33), together with the alternating flux in (3.8), we introduce

E
n
h,2 =

1

2

(
ǫ0ǫ∞||Enh||

2 + aǫ0

(
χn
h , Ih

(
(Enh)

2
))

+ μ0

(
H

n+ 1
2

h
, H

n− 1
2

h

)
+

ǫ0a

2
||χn

h ||2 +
ǫ0ω

2
0

ω2
p

||Pn
h ||

2 +
ǫ0

ω2
p

|| Jnh ||
2

)
,

(5.42)

then En+1
h,2

≤ E
n
h,2

, ∀n ≥ 1. Moreover, under a hyperbolic type time step condition,

�t ≤
2
√

μ0ǫ0ǫ∞

δ

(√
Ĉ
inv

+ 2C inv

)h, (5.43)

there holds En
h,2

≥ 0, ∀n ≥ 1, hence En
h,2

defines a discrete energy at tn .

Proof. Apply two time steps of (5.19a) and (5.19c) with ψ = φ, we have

μ0

∫

I j

H
n+ 3

2

h
− H

n− 1
2

h

�t
φdx+

∫

I j

(En+1
h

+ Enh)∂xφdx−
(
Ên
h
+ ̂

En+1
h

)

j+ 1
2

φ−
j+ 1

2

+
(
Ên
h
+ ̂

En+1
h

)

j− 1
2

φ+
j− 1

2

= 0, ∀φ ∈ U K
h . (5.44)

Take ϕ = En
h

+ En+1
h

in (5.19b) and φ = H
n+ 1

2

h
in (5.44), sum them up over all elements, use the definition of the alter-

nating flux and periodic boundary conditions, we obtain

μ0

(
H

n+ 3
2

h
− H

n− 1
2

h
, H

n+ 1
2

h

)
+
(
Dn+1
h

− Dn
h, E

n+1
h

+ Enh
)
= 0. (5.45)

Multiply Pn+1
h

+ Pn
h
to (5.21b) and integrate in x, we get

||Pn+1
h

||2 − ||Pn
h ||

2 =
�t

2

(
Jn+1
h

+ Jnh, P
n+1
h

+ Pn
h

)
. (5.46)

Multiply 1

ω2
p
( Jn+1

h
+ Jn

h
) to (5.21c), integrate in x, and rewrite the result by applying (5.21b) and (5.46), we get

1

ω2
p

(
|| Jn+1

h
||2 − || Jnh ||

2
)

+
�t

2ω2
pτ

|| Jn+1
h

+ Jnh ||
2 +

ω2
0

ω2
p

(
||Pn+1

h
||2 − ||Pn

h ||
2
)

=
(
En+1
h

+ Enh, P
n+1
h

− Pn
h

)
. (5.47)

Now combine (5.33), (5.45) and (5.47), we reach

μ0

(
H

n+ 3
2

h
, H

n+ 1
2

h

)
− μ0

(
H

n+ 1
2

h
, H

n− 1
2

h

)
+ ǫ0ǫ∞

(
||En+1

h
||2 − ||Enh||

2
)

+ ǫ0a
((

χn+1
h

, Ih((E
n+1
h

)2)
)
−
(
χn
h , Ih((E

n
h)

2)
)

+
aǫ0

2

(
||χn+1

h
||2 − ||χn

h ||2
)

+
ǫ0a�t

ε

∣∣∣∣∣

∣∣∣∣∣
χn+1
h

+ χn
h

2
− Ih

(
(En+1

h
)2 + (En

h
)2

2

)∣∣∣∣∣

∣∣∣∣∣

2

+
ǫ0

ω2
p

(
|| Jn+1

h
||2 − || Jnh ||

2
)

+
ǫ0ω

2
0

ω2
p

(
||Pn+1

h
||2 − ||Pn

h ||
2
)

+
ǫ0�t

2ω2
pτ

|| Jn+1
h

+ Jnh ||
2 = 0. (5.48)

In terms of En
h,2

, (5.48) can also be written as
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E
n+1
h,2

− E
n
h,2 = −

ǫ0a�t

2ε

∣∣∣∣∣

∣∣∣∣∣
χn+1
h

+ χn
h

2
− Ih

(
(En+1

h
)2 + (En

h
)2

2

)∣∣∣∣∣

∣∣∣∣∣

2

−
ω2

0�t

ω2
pτ

∣∣∣∣∣

∣∣∣∣∣
Jn+1
h

+ Jn
h

2

∣∣∣∣∣

∣∣∣∣∣

2

, (5.49)

and this implies En+1
h,2

≤ E
n
h,2

, ∀n ≥ 0.

What remained is to figure out when the term En
h,2

is non-negative, hence when it defines a discrete energy. Based on 

(A.66) and Theorem 5.1, we know (χn
h
, Ih((E

n
h
)2)) ≥ 0. We now only need to examine (H

n+ 1
2

h
, H

n− 1
2

h
). Following the same 

argument as in [4] (see Theorem 5.1, particularly (5.22)-(5.23)), we find
(
H

n+ 1
2

h
, H

n− 1
2

h

)
= ||Hn

h||
2 − ||Hn

h − H
n− 1

2

h
||2. (5.50)

From the scheme (5.19c) and inverse inequalities, one gets

μ0

2
||Hn

h − H
n− 1

2

h
||2 =

�t

4

Nx∑

j=1

⎛
⎜⎝−

∫

I j

Enh∂x(H
n
h − H

n− 1
2

h
)dx+ (Ên

h
) j+ 1

2
(Hn

h − H
n− 1

2

h
)−
j+ 1

2

− (Ên
h
) j− 1

2
(Hn

h − H
n− 1

2

h
)+
j− 1

2

⎞
⎟⎠

≤ ||Hn
h − H

n− 1
2

h
||
(√

Ĉ inv + 2C inv

)
δ�t

4h
||Enh||,

hence

μ0

2
||Hn

h − H
n− 1

2

h
||2 ≤

(√
Ĉ inv + 2C inv

)2
(δ�t)2

8μ0h2
||Enh||

2. (5.51)

Finally, we combine (5.50) and (5.51), and conclude

μ0

2

(
H

n+ 1
2

h
, Hn− 1

2

)
+

ǫ0ǫ∞
2

||Enh||
2 ≥

μ0

2
||Hn

h||
2 +

(
ǫ0ǫ∞
2

−
(√

Ĉ inv + 2C inv

)2
(δ�t)2

8μ0h2

)
||Enh||

2 ≥ 0, (5.52)

under the time step condition

�t ≤
2
√

μ0ǫ0ǫ∞

δ
(√

Ĉ inv + 2C inv

)h. (5.53)

This condition also ensures En
h,2

≥ 0. ✷

5.6. Nonlinear algebraic solvers

Due to the implicit treatments in the proposed numerical methods, nonlinear algebraic equations need to be solved in 
actual implementation. In this section, we will discuss some aspects of the nonlinear solvers.

5.6.1. Algorithm
All the proposed methods are implemented in their nodal form. For the leapfrog schemes, namely, the MELA scheme 

and the MELE scheme, the implicitness comes from the discretizations of the ADE part and the constitutive laws. A small 
size nonlinear algebraic system needs to be solved locally at each x jk . The standard Newton’s method is applied. For the 
trapezoidal META scheme, the implicitness also comes from the PDE discretization. The resulting nonlinear algebraic system 
is globally coupled, and it is solved using a Jacobian-free Newton-Krylov solver [25]. The solver is implemented within the 
framework of the KINSOL package [29].

The nonlinear solver is described next as an algorithm. Suppose un is the data representing the numerical solution from 
the time tn , and we need to solve an algebraic system f(u) = 0 (which is either locally or globally defined; and f generally 
depends on n) to get the data representing the numerical solution un+1 at tn+1 .

Algorithm: Given un , we want to solve f(u) = 0 for un+1 .

Initialization: Let u−1 = un . Let u0 be an initial guess, and k = 0.

while
(
k < kmax

)
and 

(
(||f(uk)|| > Tol) or (||uk − uk−1|| > Tol)

)
do

uk+1 = uk − J−1
f

f(uk), and k := k + 1.

end

Output: un+1 = uk .
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Here J f is the Jacobian of f(u) or its approximation, depending on which solver is used. In our implementation, the error 
tolerance is taken as Tol = 10−10 and the maximum iteration number is kmax = 200. Unless otherwise specified, the initial 
guess u0 is chosen as the data from the previous time step, namely, u0 = un . With the local nature of the leapfrog schemes, 
J f and its inverse can be easily obtained analytically for each nodal point x jk . When the Jacobi-free Newton Krylov solver 
is applied for the META scheme, the GMRES method is used as the linear solver to obtain uk+1 .

5.6.2. Initial guess for the MELE scheme

For the schemes with the algebra-based constitutive law, including the MELA and META schemes, they perform quite 
well when the initial guess in the Newton’s method is based on the data from the previous time step, namely, u0 = un . This 
initial guess however, when used in the MELE scheme that involves the energy-based constitutive law, may result in the 
convergence of the Newton solver to a nonphysical solution. Next, we will elaborate the reason and propose strategies for 
possibly finding a better initial guess.

Recall the nonlinearity of the underlying model is cubic. When the energy-based constitutive law (5.33) is used, the 
resulting nonlinear algebraic problem is quartic. It is one degree higher than that from the MELA or META scheme, and 
allows one more solution which can be non-physical. This can be explained using the soliton propagation problem in 
Section 6.2.2. In this example, the initial conditions for all fields are zero, and a non-zero signal is introduced to the domain 
as a left boundary condition. For the MELE scheme, the signal from the left boundary changes the D term through (5.19), 
and then updates the E term through (5.33) together with (5.21). When the solutions at tn are zero, (5.21) and (5.33) allow 
a zero solution En+1

h
regardless of the boundary condition. This zero solution is not physical, yet it will be captured by the 

Newton’s solver if the initial guess is set as the zero numerical solution at the previous time. As a result, we will observe 
that En

h
= 0, ∀n ≥ 1.

We next propose several strategies to assign an initial guess u0 for the Newton solver in the MELE scheme. Assume the 
numerical solutions at tn are known, and Dn+1

h
has already been computed from (5.19). We will compute E∗, χ∗, P∗, J∗ ∈

U K
h

based on one of the following strategies, then use them as the initial guess for the Newton solver in the MELE scheme 

to get En+1
h

, χn+1
h

, Pn+1
h

, Jn+1
h

∈ U K
h
.

1.) “backward Euler initial guess”: We solve for E∗, χ∗, P∗, J∗ ∈ U K
h

based on a back Euler discretization of the ADE part and 
a direct discretization of the constitutive relation, namely,

Dn+1
h

= ǫ0
(
ǫ∞E∗ + aIh

(
χ∗E∗)+ P∗) , (5.54a)

χ∗ − χn
h

�t
= −

1

ε

(
χ∗ − Ih

(
(E∗)2

))
, (5.54b)

P∗ − Pn
h

�t
= J∗, (5.54c)

J∗ − Jn
h

�t
+

1

τ
J∗ + ω2

0 P
∗ = ω2

pE
∗. (5.54d)

2.) “trapezoidal initial guess”: We solve for E∗, χ∗, P∗, J∗ ∈ U K
h

based on a trapezoidal discretization of the ADE part and a 
direct discretization of the constitutive law, namely,

Dn+1
h

= ǫ0
(
ǫ∞E∗

h + aIh
(
χ∗E∗)+ P∗) , (5.55a)

χ∗ − χn
h

�t
= −

1

2ε

(
χ∗ − Ih((E

∗)2) + χn
h − Ih((E

n
h)

2)
)
, (5.55b)

P∗ − Pn
h

�t
=

1

2

(
J∗ + Jnh

)
, (5.55c)

J∗ − Jn
h

�t
+

1

2τ

(
J∗ + Jnh

)
+

ω2
0

2

(
P∗ + Pn

h

)
=

ω2
p

2
(E∗ + Enh). (5.55d)

3.) “limiting initial guess”: based on a second order discretization of the ADEs of the limiting Kerr-Lorentz model and the 
difference form of the constitutive law, we solve for E∗, χ∗, P∗, J∗ ∈ U K

h
as follows,

Dn+1
h

− Dn
h = ǫ0

(
ǫ∞(E∗ − Enh) + a(Y ∗ − Y n

h ) + P∗ − Pn
h

)
, (5.56a)

Y ∗ − Y n
h =

3

2
Ih

((
(E∗)2 + (Enh)

2
)(
E∗ − Enh

))
, (5.56b)

χ∗ = Ih((E
∗)2), (5.56c)

P∗ − Pn
h

�t
=

1

2

(
J∗ + Jnh

)
, (5.56d)
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Table 5.1

Properties of the proposed second order MELE, MELA and META schemes.

MELE MELA META

Maxwell part leapfrog leapfrog trapezoidal

Numerical fluxes alternating alternating alternating, upwind

Constitutive law energy-based algebra-based algebra-based

Stability conditional conditional unconditional

Positivity and asymptotic preserving � � �

Provable energy relation � ✗ ✗

Nonlinear algebraic equations local local global

Initial guess special choice previous step previous step

J∗ − Jn
h

�t
+

1

2τ

(
J∗ + Jnh

)
+

ω2
0

2

(
P∗ + Pn

h

)
=

ω2
p

2

(
E∗ + Enh

)
. (5.56e)

For each strategy above to get u0 , a nonlinear algebraic system needs to be solved. For this we apply Newton solver with 
un as an initial guess. The performance of these strategies will be investigated in the numerical section based on the soliton 
propagation example, see Section 6.2.2. The study suggests the use of the trapezoidal initial guess strategy in the MELE 
scheme, based on its overall cost efficiency for different ε’s. Finally in Table 5.1, we summarize the features and properties 
of the three second order in time schemes proposed in this section.

6. Numerical examples

In this section, we will present a set of numerical examples to demonstrate the performance of the proposed schemes. 
We will start with an ODE example before moving to the Kerr-Debye-Lorentz model.

6.1. An ODE example

We will use the following ODE example

du1

dt
= −u2

2, (6.57a)

du2

dt
= −u2

1, (6.57b)

dv

dt
= −

1

ε

(
v −

u2
1 + u2

2

v2

)
, (6.57c)

to demonstrate the performance of the time integrator in Section 5.2.2. For the non-stiff part, the trapezoidal or the stag-
gered leapfrog method is applied. For the stiff part, the modified exponential time integrator is applied. We consider the 
initial data u1(0) = 2, u2(0) = 1, and v(0) = 1.

We first compute a reference solution, uref and vref , up to T = 1, using the RK4 method with max(50000, floor( 100ε ))

uniform time steps. The errors at T = 1 are shown in Table 6.2 for �t = 1
40

, 1
80

, 1
160

, 1
320

, and ε = 1, 10−2, 10−6 . For the 
trapezoidal method, the second order accuracy is observed for u1 and u2 with all ε. When �t ≪ ε or ε ≪ �t , second order 
accuracy is observed for v . When �t/ε = O (1), we can see that the convergence rate for v slows down. When the mesh 
is further refined, the second order accuracy will come back again. This phenomenon is the so-called order reduction of 
AP schemes in the intermediate regime. This can be explained by the large error in (5.22) when �t and ε are of the same 
order of magnitude. The observations for the leapfrog method are very similar.

In Fig. 6.1, we further show the convergence rates and errors of the numerical solutions by uniformly sampling ε in its 
logarithmic scale. The convergence rate is calculated based on the numerical errors with �t = 1

100
and �t = 1

200
. Errors in 

u = (u1, u2)
T are computed based on its l2 norm. Second order accuracy for v is observed when ε ≪ �t or ε ≫ �t . For the 

intermediate regime ε ≈ O (�t), a wiggle in the convergence rate of v is observed due to the order reduction, while the 
numerical errors in the solutions are still fairly small.

6.2. Kerr-Debye-Lorentz model

In this section, we will present the numerical results for the Kerr-Debye-Lorentz model. For the proposed schemes with 
the first order temporal accuracy, the piecewise constant space U K

h
with K = 0 is used; for the proposed schemes with the 

second order temporal accuracy, the piecewise linear space U K
h

with K = 1 is used. Increasing spatial orders can improve the 
numerical resolution significantly. We here choose to present the schemes with the same formal accuracy orders in space 
and time to better reveal and compare the properties of the different methods. Altogether, we will examine the performance 
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Table 6.2

Errors and orders at T = 1 for the ODE example in Section 6.1.

Scheme ε �t |u1,h(T ) − u
ref
1 (T )| Order |u2,h(T ) − u

ref
2 (T )| Order |vh(T ) − vref (T )| Order

Trapezoidal 1 1
40

1.182e−03 – 8.404e−04 – 2.715e−04 –
1
80

2.958e−04 2.00 2.100e−04 2.00 6.791e−05 2.00
1

160
7.398e−05 2.00 5.250e−05 2.00 1.698e−05 2.00

1
320

1.850e−05 2.00 1.312e−05 2.00 4.245e−06 2.00

10−2 1
40

1.182e−03 – 8.404e−04 – 2.768e−04 –
1
80

2.958e−04 2.00 2.100e−04 2.00 1.188e−04 1.22
1

160
7.398e−05 2.00 5.250e−05 2.00 3.639e−05 1.71

1
320

1.850e−05 2.00 1.312e−05 2.00 9.955e−06 1.87

10−6 1
40

1.182e−03 – 8.404e−04 – 2.012e−04 –
1
80

2.958e−04 2.00 2.100e−04 2.00 5.034e−05 2.00
1

160
7.398e−05 2.00 5.250e−05 2.00 1.268e−05 1.99

1
320

1.850e−05 2.00 1.312e−05 2.00 3.273e−06 1.95

Leapfrog 1 1
40

6.002e−04 – 4.655e−04 – 1.822e−04 –
1
80

1.503e−04 2.00 1.165e−04 2.00 4.559e−05 2.00
1

160
3.759e−05 2.00 2.913e−05 2.00 1.140e−05 2.00

1
320

9.399e−06 2.00 7.284e−06 2.00 2.850e−06 2.00

10−2 1
40

6.002e−04 – 4.655e−04 – 3.601e−04 –
1
80

1.503e−04 2.00 1.165e−04 2.00 1.394e−04 1.37
1

160
3.759e−05 2.00 2.913e−05 2.00 4.152e−05 1.75

1
320

9.399e−06 2.00 7.284e−06 2.00 1.123e−05 1.89

10−6 1
40

6.002e−04 - 4.655e−04 – 1.215e−04 –
1
80

1.503e−04 2.00 1.165e−04 2.00 3.051e−05 1.99
1

160
3.759e−05 2.00 2.913e−05 2.00 7.732e−06 1.98

1
320

9.399e−06 2.00 7.284e−06 2.00 2.035e−06 1.93

of the first order semi-implicit SI1-al and SI1-up schemes, the first order fully implicit FI1-al and FI-up schemes, the second 
order MELA and MELE schemes, and the second order META-al and META-up schemes. Here “-al” (“-up”) is to indicate the 
use of the alternating (upwind) flux. As discussed before, the MELA and MELE schemes are only coupled with the alternating 
fluxes.

All simulations are done on uniform meshes. Let h be the mesh size in space. The time step size �t is determined by 

�t = 0.75h for the META and FI1 schemes. Based on the energy analysis in Section 5.5, �t = 0.9 × 2
√

μ0ǫ0ǫ∞√
12+8

h is taken 

for the MELE scheme, and this time step size formula is also used for the MELA scheme. For the SI1 scheme, we take 

�t =
√

μ0ǫ0ǫ∞
4

h for the upwind flux, and �t = 0.9h2 for the alternating flux.
The actual simulation is carried out based on the dimensionless form of the equations. Consider the Kerr-Debye system 

with Nω linear Lorentz responses

μ0∂tH = ∂xE, (6.58a)

∂tD = ∂xH, (6.58b)

D = ǫ0

(
(ǫ∞ + aχ)E +

Nω∑

k=1

Pk

)
, (6.58c)

∂tχ = −
1

ε
(χ − E2), (6.58d)

∂t Pk = Jk, k = 1,2, . . . ,Nω, (6.58e)

∂t Jk +
1

τk
Jk + ω2

k Pk = (ω
(k)
p )2E, k = 1,2, . . . ,Nω. (6.58f)

Let τ̄ be the reference time scale, cτ̄ be the reference space scale, where c = 1√
μ0ǫ0

is the speed of light, and let Ē be the 

reference electric field. By setting

t/τ̄ → t, x/(cτ̄ ) → x,
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Fig. 6.1. Convergence rate vs ε (left column) and error vs ε (right column) for the ODE example in Section 6.1.

(H/Ē)
√

μ0/ǫ0 → H, D/(ǫ0 Ē) → D, P/Ē → P ,

( J/Ē)τ̄ → J , E/Ē → E, χ/Ē2 → χ , aĒ2 → a,

ωkτ̄ → ωk, (1/τk)τ̄ → 1/τk, τ̄ω
(k)
p → ω

(k)
p ,

1

ε
τ̄ →

1

ε
, (6.59)

we obtain the dimensionless system,

∂tH = ∂xE, (6.60a)

∂tD = ∂xH, (6.60b)

D = (ǫ∞ + aχ)E +
Nω∑

k=1

Pk, (6.60c)

∂tχ = −
1

ε
(χ − E2), (6.60d)

∂t Pk = Jk, k = 1,2, . . . ,Nω, (6.60e)

∂t Jk +
1

τk
Jk + ω2

k Pk = (ω
(k)
p )2E, k = 1,2, . . . ,Nω. (6.60f)

Here without confusion, we use the same notation for the scaled and the original variables.
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Table 6.3

L2 errors and convergence orders for the example in Section 6.2.1, T = 1, the SI1 method.

Flux ε Nx L2 error of D Order L2 error of H Order L2 error of χ Order

Alternating 1 1 100 6.047E−03 – 1.506E−02 – 5.565E−03 –

200 3.008E−03 1.01 7.518E−03 1.00 2.662E−03 1.06

400 1.502E−03 1.00 3.757E−03 1.00 1.315E−03 1.02

800 7.508E−04 1.00 1.878E−03 1.00 6.556E−04 1.00

10−2 100 5.376E−03 – 1.848E−02 – 1.120E−02 –

200 2.674E−03 1.01 9.227E−03 1.00 5.568E−03 1.01

400 1.335E−03 1.00 4.612E−03 1.00 2.780E−03 1.00

800 6.674E−04 1.00 2.305E−03 1.00 1.390E−03 1.00

10−6 100 5.374E−03 1.00 1.854E−02 1.01 1.131E−02 1.01

200 2.673E−03 1.01 9.257E−03 1.00 5.625E−03 1.01

400 1.335E−03 1.00 4.627E−03 1.00 2.809E−03 1.00

800 6.671E−04 1.00 2.313E−03 1.00 1.404E−03 1.00

Upwind 1 100 5.627E−03 – 1.200E−02 – 1.001E−02 –

200 2.856E−03 0.98 6.042E−03 0.99 5.040E−03 0.99

400 1.439E−03 0.99 3.032E−03 0.99 2.529E−03 0.99

800 7.226E−04 0.99 1.519E−03 1.00 1.267E−03 1.00

10−2 100 5.908E−03 – 1.247E−02 – 1.135E−02 –

200 3.003E−03 0.98 6.273E−03 0.99 5.755E−03 0.98

400 1.515E−03 0.99 3.147E−03 1.00 2.899E−03 0.99

800 7.606E−04 0.99 1.576E−03 1.00 1.455E−03 0.99

10−6 100 5.926E−03 – 1.248E−02 – 1.137E−02 –

200 3.013E−03 0.98 6.279E−03 0.99 5.767E−03 0.98

400 1.519E−03 0.99 3.150E−03 1.00 2.905E−03 0.99

800 7.629E−04 0.99 1.578E−03 1.00 1.458E−03 0.99

6.2.1. Accuracy test: a manufactured solution
A manufactured solution is used to demonstrate the accuracy of the scheme. Consider the following dimensionless sys-

tem:

∂tH = ∂xE + F1, ∂tD = ∂xH + F2,

D = (1 + χ)E + P , χt = −
1

ε
(χ − E2), (6.61)

∂t P = J , ∂t J + J + P = E + F3,

on 	 = [0, 2π ], with the exact solutions E(x, t) =
√

1
2
t − 1

4
sin(2t) + sin2(x) + 1

2
+ ε sin2(t), H(x, t) = sin(x) sin(t), χ(x, t) =

1
2
t − 1

4
sin(2t) + sin2(x) + 1

2
, P (x, t) = cos(x) sin(t), D(x, t) = (1 + χ(x, t))E(x, t) + P (x, t). F1 , F2 , F3 are the forcing terms to 

make (6.61) hold. Periodic boundary conditions are considered.
In Tables 6.3-6.6, L2 errors and convergence orders are reported for the proposed first and second order schemes, when 

ε = 1, 10−2, 10−6 . The alternating fluxes 1 and 2 lead to the same leading digits in errors, and only the results from schemes 
with the alternating flux 1 are shown. The results of the MELA and the MELE scheme also coincide (at least in their leading 
few digits, see Table 6.5). When ε = 1.0, 10−2, 10−6 , one can see the first order accuracy for the SI1 and FI1 schemes, and 
the second order accuracy for the MELE and MELA schemes. For the META scheme, second order accuracy is observed for 
ε = 1, 10−6 , yet when ε = 10−2 , an order reduction is observed with Nx = 200, 400. In this case, �t and ε are comparable, 
and the time integrator suffers from the order reduction in this intermediate regime. As we further refine the mesh, the 
second order accuracy will be regained.

6.2.2. Soliton-like propagation
Here, we consider a soliton-like propagation problem with a setup similar to [4,5,16]. A dimensionless system (6.58) is 

considered with Nω = 1, and P = P1, J = J1 . The parameters are taken as

ǫ∞ = 2.25, ǫs = 5.25, β1 = ǫs − ǫ∞, τ−1 = 1.168× 10−5, ω0 = 5.84, ωp =
√

β1ω0.

Initially, all the fields are zero. From the left boundary x = 0, a sech signal will enter the domain,

E(x = 0, t) = sech(t − 20) cos(	0t), 	0 = 12.57. (6.62)

As discussed in Section 5.1 of [16], if the soliton condition

acircle ≈ 3.78× 10−2 and a =
4

3
acircle
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Table 6.4

L2 errors and convergence orders for the example in Section 6.2.1, T = 1, the FI1 method.

Flux ε Nx L2 error of E Order L2 error of H Order L2 error of χ Order

Alternating 1 1 100 9.966E−03 - 1.540E−02 – 1.089E−02 –

200 5.049E−03 0.98 7.794E−03 0.98 5.484E−03 0.99

400 2.554E−03 0.98 3.921E−03 0.99 2.762E−03 0.99

800 1.280E−03 1.00 1.966E−03 1.00 1.383E−03 1.00

10−2 100 7.641E−03 – 1.839E−02 – 1.557E−02 –

200 3.842E−03 0.99 9.297E−03 0.98 7.813E−03 0.99

400 1.931E−03 0.99 4.675E−03 0.99 3.917E−03 1.00

800 9.664E−04 1.00 2.344E−03 1.00 1.960E−03 1.00

10−6 100 7.656E−03 – 1.844E−02 – 1.566E−02 –

200 3.848E−03 0.99 9.325E−03 0.98 7.862E−03 0.99

400 1.932E−03 0.99 4.689E−03 0.99 3.945E−03 0.99

800 9.672E−04 1.00 2.351E−03 1.00 1.974E−03 1.00

Upwind 1 100 6.820E−03 – 1.640E−02 – 9.889E−03 –

200 3.516E−03 0.96 8.216E−03 1.00 5.084E−03 0.96

400 1.800E−03 0.97 4.113E−03 1.00 2.590E−03 0.97

800 9.065E−04 0.99 2.057E−03 1.00 1.303E−03 0.99

10−2 100 5.497E−03 – 1.519E−02 – 1.132E−02 –

200 2.865E−03 0.94 7.552E−03 1.01 5.880E−03 0.94

400 1.468E−03 0.96 3.766E−03 1.00 3.002E−03 0.97

800 7.415E−04 0.99 1.880E−03 1.00 1.515E−03 0.99

10−6 100 5.544E−03 – 1.517E−02 – 1.134E−02 –

200 2.889E−03 0.94 7.543E−03 1.01 5.891E−03 0.94

400 1.479E−03 0.97 3.761E−03 1.00 3.011E−03 0.97

800 7.470E−04 0.99 1.878E−03 1.00 1.520E−03 0.99

Table 6.5

L2 errors and convergence orders for the example in Section 6.2.1, T = 1, the MELE (MELA) method.

Flux ε Nx L2 error of E Order L2 error of H Order L2 error of χ Order

Alternating 1 1 100 1.182E−04 – 1.358E−04 – 1.689E−04 –

200 2.752E−05 2.10 3.451E−05 1.98 4.222E−05 2.00

400 7.574E−06 1.86 8.341E−06 2.05 1.056E−05 2.00

800 1.753E−06 2.11 2.028E−06 2.04 2.638E−06 2.00

10−2 100 1.357E−04 – 1.136E−04 – 3.248E−04 –

200 3.918E−05 1.79 2.835E−05 2.00 9.495E−05 1.77

400 1.054E−05 1.89 7.084E−06 2.00 2.556E−05 1.89

800 2.916E−06 1.85 1.771E−06 2.00 7.027E−06 1.86

10−6 100 1.685E−04 – 2.139E−04 – 3.910E−04 –

200 3.726E−05 2.18 5.530E−05 1.95 7.388E−05 2.40

400 1.035E−05 1.85 1.295E−05 2.09 2.175E−05 1.76

800 2.310E−06 2.16 3.293E−06 1.98 5.084E−06 2.10

holds, a soliton structure is supported by the Kerr media (ε = 0). Based on this, we set a = 0.0504. The relaxation time in 
our Kerr-Debye-Lorentz model is taken as ε = 10−8 and ε = 0.1.

In our simulation, we take the computational domain as 	 = [0, 50], and the final time as T = 40 or 80. With these 
choices, the signal will not reach the right boundary by the final time, thus zero boundary conditions are used for E and 
H at x = 50. Depending on the numerical fluxes, the numerical boundary condition may be needed for the magnetic field 
H at the left boundary. Just as in [4,5,16], based on the dispersion relation of the linear model with the Lorentz response, 
namely

k(ω) = ω

√
ǫ∞ −

ω2
p

ω2 − iω/τ − ω2
0

, (6.63)

we derive and propose the following numerical boundary condition

H(x = 0, t) ≈
1

2

(
2∑

m=0

(−i)m

m!
(
1

Z
)(m)

∣∣∣
ω=	0

f (m)(t)

)
ei	0t + c.c., (6.64)
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Table 6.6

L2 errors and convergence orders for the example in Section 6.2.1, T = 1, the META method.

Flux ε Nx L2 error of E Order L2 error of H Order L2 error of χ Order

Alternating 1 1 100 1.303E−04 – 1.709E−04 – 1.707E−04 –

200 3.192E−05 2.03 4.136E−05 2.05 4.292E−05 1.99

400 8.394E−06 1.93 1.122E−05 1.88 1.083E−05 1.99

800 2.358E−06 1.83 2.554E−06 2.14 2.699E−06 2.00

10−2 100 1.651E−04 – 1.373E−04 – 5.476E−04 –

200 1.355E−04 0.29 4.537E−05 1.60 3.687E−04 0.57

400 1.429E−04 −0.07 1.385E−05 1.71 3.170E−04 0.22

800 3.804E−05 1.91 3.819E−06 1.86 8.455E−05 1.91

1600 1.087E−05 1.81 1.002E−06 1.93 2.397E−05 1.82

10−6 100 1.558E−04 – 2.559E−04 – 3.105E−04 –

200 4.736E−05 1.72 6.276E−05 2.03 9.966E−05 1.64

400 1.124E−05 2.08 1.404E−05 2.16 2.503E−05 1.99

800 2.542E−06 2.14 3.681E−06 1.93 4.986E−06 2.33

Upwind 1 100 1.076E−04 – 1.067E−04 – 1.169E−04 –

200 2.776E−05 1.95 2.668E−05 2.00 3.031E−05 1.95

400 7.058E−06 1.98 6.676E−06 2.00 7.744E−06 1.97

800 1.779E−06 1.99 1.669E−06 2.00 1.954E−06 1.99

10−2 100 1.427E−04 – 1.443E−04 – 5.295E−04 –

200 1.348E−04 0.08 4.720E−05 1.61 3.686E−04 0.52

400 1.429E−04 -0.08 1.421E−05 1.73 3.170E−04 0.22

800 3.804E−05 1.91 3.899E−06 1.87 8.455E−05 1.91

1600 1.087E−05 1.81 1.020E−06 1.93 2.397E−05 1.82

10−6 100 1.168E−04 – 1.319E−04 – 2.813E−04 –

200 3.007E−05 1.96 3.296E−05 2.00 7.223E−05 1.96

400 7.671E−06 1.97 8.239E−06 2.00 1.822E−05 1.99

800 1.985E−06 1.95 2.059E−06 2.00 4.508E−06 2.02

where c.c. stands for the complex conjugate of the first term, f (m) is the m-th derivative of f (t) = sech(t − 20), Z(ω) =
− ω

k(ω)
and ( 1

Z
)(m) is the m-th derivative of 1

Z(ω)
with respect to ω.

1.) Initial guess of the MELE scheme

As discussed in Section 5.6.2, when the MELE scheme is applied, special initial guesses may be needed for the Newton 
solver to capture the physically relevant solution. In this section, we want to use this soliton-like propagation as an example 
to numerically examine the effectiveness and efficiency of the various initial guesses proposed in Section 5.6.2.

Recall that to update the solution at tn+1 based on the solution at tn , the MELE scheme at each nodal point x jk, ∀ j, k
consists of two steps:

• Initial-guess step: to get the initial guess u0 , by applying Newton solver to one of the strategies in (5.54), (5.55), (5.56). 
For the Newton solver in this step, it also requires an initial guess which is set based on un

h
.

• Solution step: to apply Newton solver with the initial guess u0 to solve (5.21) and (5.33), and obtain un+1
h

.

For the initial-guess step, we will count the total number of Newton iterations, denoted as Totguess , used at all nodal 
points x jk, ∀ j, k up to the final time T . During the i-th time step, we also count the total number of nodal points, denoted 
as N i

guess , for each of which at least one iteration is needed in the Newton solver. The averaged number of iterations is then 
defined as

Avgguess =
Totguess∑

i:i�t≤T N i
guess

.

Similarly, for the solution step, we can count and define Totsol and Avgsol .
Finally, we define Tottotal = Totguess + Totsol and Avgtotal = Avgguess + Avgsol . We want to point out that for each step, 

it is possible that zero iteration is needed in the Newton solver (see the flow chart of the algorithm in Section 5.6.1).

We implement the algorithm up to T = 80 on a uniform mesh with Nx = 3500, and the iteration numbers defined 
above are reported in Table 6.7 when the relaxation time is ε = 10−8 or 0.1. The error tolerance is set as Tol = 10−10 for 
both the initial-guess step and the solution step (see the algorithm in Section 5.6.1). For the simulations with a given ε, 
the numerical solutions based on all three initial guess strategies share the same leading digits and visually coincide with 
each other. From Table 6.7, we can see that the limiting initial guess strategy needs the fewest iterations when ε = 10−8 and 
the most iterations when ε = 0.1. The efficiency seems to depend on the value of ε. The trapezoidal initial guess strategy
performs well for both ε = 0.1 and ε = 10−8 . When ε = 10−8 , both the limiting and trapezoidal initial guess strategies are 
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Table 6.7

Comparison of various initial guess strategies based on the soliton-like propagation.

ε Initial guess Totguess Avgguess Totsol Avgsol Tottotal Avgtotal

0.1 Backward Euler 248639720 2.18 217314553 1.95 465954273 4.13

Trapezoidal 261425221 2.16 147253639 1.26 408678860 3.42

Limiting 265499559 2.20 279257430 2.38 544756989 4.58

10−8 Backward Euler 251777821 2.20 227013893 2.03 478791714 4.23

Trapezoidal 265115776 2.18 140879982 1.20 405995758 3.38

Limiting 263228932 2.18 117477103 1.00 380706035 3.18

Fig. 6.2. Reference solution of the soliton-like propagation in Section 6.2.2, ε = 10−8 . (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

comparably efficient. Compared with the trapezoidal initial guess strategy, the backward Euler initial guess strategy needs 
more iterations. Based on this study, we recommend and will use the trapezoidal initial guess strategy for the MELE scheme 
in all the remaining numerical experiments.

2.) Numerical results for the soliton-like propagation
Next we want to present the numerical results from simulating the soliton-like propagation using the proposed methods. 

With this example, we want to illustrate the AP and PP properties, and compare the performance of different schemes. We 
also want to examine the influence of the finite relaxation time on the soliton propagation.

First of all, no negative value of χ jk is observed throughout the simulation of each scheme. This confirms the PP property 
of the methods. Numerically, we deem χh to be nonnegative if χ jk > Tol∗, ∀ j, k. We set Tol∗ = −5 × 10−13 in all the 
simulations.

When ε = 10−8 , the reference solution is computed by applying (the nodal version of) the leapfrog DG scheme in [4], 
with an alternating flux, to the limiting Kerr-Lorenz model on a uniform mesh with h = 1

400
, and it is plotted in Fig. 6.2. 

One can see the soliton propagating in time, and moreover, a daughter pulse is observed at t = 80 due to the harmonic 
generation.

• In Figs. 6.3 and 6.4, we show the computed electric field E by all the second order schemes with h = 1
70

and ε = 10−8

at t = 80. The numerical results of the MELA and the MELE schemes are visually indistinguishable. From Fig. 6.3, one 
can see that the result of each method matches well the overall structure of the reference solution, indicating the AP 
property of the proposed methods. In Fig. 6.4, the plots are zoomed-in to compare the detailed structures of the main 
pulse and the daughter pulse due to the harmonic generation. The MELE and MELA schemes perform the best among 
all, in terms of capturing the location and amplitude of the main and daughter pulses. The META-al scheme captures 
the amplitude of both pulses yet not their location, especially of the daughter pulse, due to the numerical dispersive 
errors. As a more diffusive method with the use of the upwind flux, the META-up scheme captures the main pulse with 
slightly reduced amplitude and shifted location, while it is too dissipative to capture the daughter pulse.

• In Figs. 6.5 and 6.6, we show the zoomed-in electric field E by the first order semi-implicit SI1 scheme and the fully 
implicit FI1 scheme with h = 1

70
and ε = 10−8 at t = 80. The SI1-al scheme captures both the main and daughter pulses 

well; the SI1-up schemes captures the main pulse reasonably well with the amplitude slighted reduced, yet it does not 
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Fig. 6.3. The electric field E in the soliton-like propagation at t = 80, computed by the second order MELE, MELA and META schemes, ε = 10−8 .

Table 6.8

Normalized CPU times for the example in Section 6.2.2 with T = 40 and h = 1
70

.

MELA MELE META-al META-up

ε = 0.1 1.00 1.28 606.42 457.71

ε = 10−8 1.53 1.80 777.45 574.24

capture the daughter pulse with its numerical dissipation. The fully implicit Fl1 scheme is too dissipative to capture 
either pulse.

When ε = 0.1, the reference solution is obtained by the MELA scheme with h = 1
400

and shown in Fig. 6.7. On such 
refined mesh, the numerical solutions are not sensitive to the choice of the schemes. Compared with the solution for 
ε = 10−8 , the main pulse now is broadened and the soliton structure is broken. In Fig. 6.8, we present the zoomed-in plots 
of the computed electric field E by the proposed second order schemes at t = 80 with h = 1

70
, together with the reference 

solution. Similar observations can be made as for the case with ε = 10−8: the MELA and the MELE schemes perform the 
best, and there is no visual difference between their results; the META-al method gives a slight different location of the 
main pulse and fails to capture the correct location of the daughter pulse. The META-up scheme still does not capture 
the daughter pulse, due to its numerical dissipation. When the proposed first order schemes are applied, one can make 
observations and comments similarly as when these methods are applied to the case of ε = 10−8 . The numerical results are 
omitted here.

From the numerical experiments for the model with ε = 0 (see the reference solutions in Fig. 6.2), ε = 10−8 and ε = 0.1, 
we learn that as the relaxation time increases, the main pulse of the soliton-like structure is broadened and the amplitude 
of the daughter pulse due to the harmonic generation is reduced.

Remark 6.1. Note that for all the methods we implemented, the same spatial mesh size is used, while the time step size is 
chosen for each method according to the beginning of Section 6. In particular, for the second order methods, the trapezoidal 
schemes (namely, META-a and META-up) use a time step size that is about five times of that for the leapfrog schemes 
(namely, MELE and MELA), yet the trapezoidal schemes still take much longer time to run with their nonlinear algebraic 
being global. To see this, we report in Table 6.8 the normalized CPU times of various second order methods on a mesh of 
h = 1

70
up to the final time T = 40 with ε = 0.1, 10−8 . The normalization is with respect to the CPU time of the MELA 

scheme with ε = 0.1. The simulations are performed on a Dell precision T5500 machine with 2.27 GHz Intel Xeon E5607 
CPU and 12300 MB memory. As mentioned before, the nonlinear algebraic solvers for the trapezoidal and leapfrog schemes 
are different. Specifically, we use a Jacobian-free Newton Krylov solver for the trapezoidal schemes within the framework 
of the KINSOL package [29] and an in-house Newton solver for the leapfrog schemes. Even with the difference in time step 
sizes and nonlinear algebraic solvers, Table 6.8 qualitatively shows that the leapfrog schemes have much better computa-

tional efficiency than the trapezoidal ones. According to the earlier on discussion in this section, the cost-efficient MELE 
and MELA methods also better resolve the solution than the META-a and META-up methods. The resolution of these trape-
zoidal methods can be improved if the time step size is reduced, and this will come at the price of a further increased 
computational time. Similar comment can be made for the first order semi-implicit and full implicit schemes.

6.2.3. Sech signal in fused bulk silica
Our final example concerns a signal propagating in the fused bulk silica that follows a similar setting as in [17]. The 

model involves three linear dispersion responses. Before non-dimensionalization, the physical parameters in (6.58) are taken 
as
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Fig. 6.4. The zoomed-in electric field E in the soliton-like propagation at t = 80, computed by the second order MELE, MELA and META schemes, ε = 10−8 . 
Left: main pulse; Right: daughter pulse.
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Fig. 6.5. The zoomed-in electric field E in the soliton-like propagation at t = 80, computed by the first order semi-implicit SI1 scheme, ε = 10−8 . Left: main 
pulse; Right: daughter pulse.

ǫ∞ = 1, μ0 = 4π × 10−7 H/m, ǫ0 =
1

μ0c2
,

τ1 = τ2 = τ3 = 10 µs,

ωk =
2πλk

c
, ω

(k)
p =

√
βkωk, k = 1,2,3,

where

β1 = 0.7, β2 = 0.4, β3 = 0.9, λ1 = 0.068 µm, λ2 = 0.116 µm, λ3 = 9.9 µm.

Here again c is the speed of light.
Initially, all the fields are zero. From the left boundary x = 0, a sech signal enters the domain

E(x = 0, t) = E0sech

(
t − 50 f s

t0

)
cos(	0t), (6.65)

where t0 = 5 fs, 	0 = 1520 THz, and E0 satisfies aE2
0 = 0.06. The final time is T = 40π/	0 , and the spatial domain is 

[0, 15ct0]. The relaxation time takes the value of ε = 0.5 fs, 0.1 fs and 10−4 fs. To get a dimensionless system, we set 
τ̄ = 5 fs = 5 × 10−15 s and Ē = E0 in (6.59). The numerical boundary condition for H at the left boundary is obtained 
similarly as for the example in Section 6.2.2. The signal will not reach the right boundary at the final time, so zero boundary 
conditions are used at the right boundary for E and H . With the physical parameters specified above, the nonlinear effect is 
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Fig. 6.6. The zoomed-in electric field E in the soliton-like propagation at t = 80, computed by the first order fully implicit FI1 scheme, ε = 10−8 . Left: main 
pulse; Right: daughter pulse.

Fig. 6.7. Reference solution of the soliton-like propagation in Section 6.2.2, ε = 0.1.
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Fig. 6.8. The zoomed-in electric field E in the soliton-like propagation at t = 80, computed by the second order MELE, MELA and META schemes, ε = 0.1. 
Left: main pulse; Right: daughter pulse.
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Fig. 6.9. The computed electric field E by the MELE scheme for the example in Section 6.2.3, with ε = 0.5, 0.1, 10−4 (fs). Solid line: finer mesh with 
h = 1

250
; Dash line: coarser mesh with h = 1

250
. First row: temporal configuration at x = 3ct0; Second row: spatial configuration at the final time T .

dominant in the model (see [17]). Using this example, we want to compare different schemes and investigate the influence 
of the finite relaxation time ε. A reference solution is computed using the second order META-al scheme with h = 1

250
. This 

mesh is refined enough that all second order schemes produce visually indistinguishable results.
In Fig. 6.9, we present the electric field E computed by the MELE scheme with h = 1

50
, together with the reference 

solution, for the model with different relaxation times. In the top row, the temporal configuration of E is plotted at x = 3ct0 . 
In the bottom row, the plots are for the spatial configuration of E at the final time. The results of the MELE scheme match 
the reference solution well. Sharp feature due to the self-steepening effect is observed. The smaller the relaxation time ε
is, the steeper feature the solution has. As observed in [17], the finite relaxation time reduces the self-steepening effect 
when compared with the Kerr-type model without the relaxation. On such a coarse mesh with h = 1

50
, there is no visual 

difference in the results from the MELE and the MELA schemes, hence the results of the MELA scheme are not reported 
here and below.

In Figs. 6.10 and 6.11, we compare the results of all the proposed first and second order schemes on the coarse mesh 
h = 1

50
. Particularly, in Fig. 6.10, we plot the temporal configuration of E at x = 3ct0 , and in Fig. 6.11, we plot the spatial 

configuration of E at the final time. Second order schemes overall outperform the first order schemes. Compared with the 
MELE (hence MELA) scheme, the results of the META schemes display less sharp features. The META-up scheme produce 
relatively more dissipative results. As commented in Remark 6.1, these trapezoidal type methods use larger time step size 
than the leapfrog type methods yet computational more costly. The resolution of the numerical solution can be improved 
if the time step is further reduced at the price of an increased computational cost. Among the first order schemes, the 
semi-implicit SI1-al performs the best. It captures the main structures of the solution. All the other first order schemes, 
including the SI1-up, FI1-al and FI1-up schemes are too dissipative to produce reasonable approximations on such a coarse 
mesh. Under the current setting, the MELE and the MELA scheme outperform the other schemes.

Finally, we want to demonstrate the third and fifth harmonic generation due to the cubic nonlinearity of the model. For 
this, we examine the numerical solutions from the MELA scheme in the frequency domain by applying the discrete Fourier 
transform to the computed electric field E over 20 periods in time (that is, over [0, T ]) at x = 2ct0 , x = 3ct0 and x = 4ct0 , 
respectively. The results on a mesh with h = 1

250
with ε = 0.5, 0.1, 10−4 (with unit fs) are presented in Fig. 6.12. One can 

clearly observe the third and fifth harmonic generation that contributes to the formation of daughter pulses. In addition, the 
longer the relaxation time ε is, the smaller magnitude of the daughter waves are. At x = 4ct0 , the frequency of the daughter 
wave is slightly smaller than 3 and 5. Similar observation was made in [17].
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Fig. 6.10. The temporal configuration of the computed electric field E by the proposed first and second order schemes for the example in Section 6.2.3, with 
ε = 0.5, 0.1, 10−4 (fs) at x = 3ct0 on a mesh with h = 1

50
.

In summary, for this example, the second order MELE and the MELA schemes perform the best among all proposed 
methods. The increase of the relaxation time for the Kerr nonlinearity reduces the self-steepening effect as well as the
strength of the harmonic generation. For all the simulations we have conducted, no negative χ jk is encountered.

7. Conclusions and future work

In this paper, we developed AP and PP schemes that are first and second order accurate in time for Maxwell’s equations 
with Kerr-Debye and Lorentz effects in one dimension. For first order in time schemes, the methods are proved to be 
energy stable, AP and PP, but unsurprisingly, numerical experiments reveal that such methods are deemed too dissipative 
for wave propagation. For the second order in time methods, the key for the AP and PP properties rely on the numerical 
discretizations of the ADE, for which we designed an exponential time integrator and the AP and PP properties are preserved 
simultaneously. Combined with implicit or explicit time discretizations for the Maxwell part, and the algebraic or energy 
consistent way for the discretization of the constitutive law, we design and numerically compare a set of second order 
methods, including the META, MELA and MELE schemes as summarized in Table 5.1.

All three second order schemes are AP and PP. The implicit META scheme is unconditionally stable. However, smaller 
time steps may be preferred in practice for good resolution of numerical solutions. In addition, a global nonlinear system 
needs to be solved during each time step, and this makes the method computationally expensive. For the MELA and MELE 
schemes, the nonlinear equations are decoupled, and they are locally defined at each nodal point and can be solved much 
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Fig. 6.11. The spatial configuration of the computed electric field E by the proposed first and second order schemes for the example in Section 6.2.3, with 
ε = 0.5, 0.1, 10−4 (fs) on a mesh with h = 1

50
at the final time T .

Fig. 6.12. The computed electric field E by the MELA scheme in the frequency domain for the example in Section 6.2.3, with ε = 0.5, 0.1, 10−4 (fs) and at 
x = 2ct0, 3ct0, 4ct0 on a mesh with h = 1

250
.



Z. Peng et al. / Journal of Computational Physics 402 (2020) 109101 31

faster. The MELE scheme is the only one that has provable energy stability, at a price of possibly requiring special initial 
guesses for the nonlinear Newton’s solver. The numerical performances of the MELE and the MELA scheme are overall 
comparable. With the consideration of the computational efficiency and the resolution of the numerical solutions, we will 
recommend the MELA and the MELE schemes over the META (surely also over the first order schemes), with the MELA 
method not relying on special initial guesses in its Newton’s solver.

We want to emphasize that when the linear Lorentz effect is absent, the model considered here becomes the Kerr-Debye 
system, which is a hyperbolic system with the stiff relaxation. In this regime, as ε → 0, one gets the limiting Kerr system, a 
nonlinear hyperbolic system that supports shock structures. The interested readers can refer to [22] for some second order 
AP and PP discontinuous Galerkin methods for the Kerr-Debye model, and [17] for some numerical studies of the model 
with or without the linear Lorentz dispersion. Our future endeavors will include extensions to higher dimensions, to other 
spatial discretizations, to nonreflecting boundary treatments for dispersive nonlinear optical models, and possibly also to 
higher order temporal discretizations.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Appendix A. The proof of Theorem 4.2

Proof. From Theorem 4.1, and the fact of χ being non-negative initially, we know χn
jk

≥ 0, ∀ j, k, n. This, together with 
Lemma 3.1, implies

(
χn
h , Ih((E

n
h)

2)
)
=
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�x j

2
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2 ≥ 0, (A.66)

hence En
h,1

≥ 0.

To perform energy stability analysis, we first consider the semi-implicit scheme (4.14). Take φ = Hn+1
h

in (4.14a), ϕ =
En+1
h

in (4.14b), and sum up in j, we have

μ0

2

(
||Hn+1

h
||2 − ||Hn

h||
2 + ||Hn+1

h
− Hn

h||
2
)

+
(
Dn+1
h

− Dn
h, E

n+1
h

)
= �t

(
ah(E

n
h, H

n+1
h

) + bh(H
n
h, E

n+1
h

)
)

, (A.67)

where
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Based on (4.14c), one obtains
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Multiply 1
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Plug (A.71) into (A.72) to eliminate 
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, and plug (A.72) into (A.69) to eliminate 
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Based on Lemma 3.2, �χ can be further simplified as
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Substitute (A.77) into (A.73), we obtain
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Similar as for (A.66), we can show 
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What remained is to estimate ah(E
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It can be verified that
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Case 1: alternating flux. Using inverse inequalities, Young’s inequality and the quasi-uniform assumption for meshes, one 
gets
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Here CK is a constant dependent of K . Similarly,
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With these estimates and (A.79), we have
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and subsequently
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By requiring �t
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to be bounded by any generic constant C , we will have En+1
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Case 2: upwind flux. With the upwind flux and apply integration by parts on each I j , we get
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When K = 0, ∂xEn
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= 0. Using the inverse inequality (3.13a) and Young’s inequality, we reach
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Combine (A.81), (A.88) and (A.79), we have

E
n+1
h,1

− E
n
h,1 ≤ �t|ah(Enh, H

n+1
h

) + bh(H
n
h, E

n+1
h

)| − �T

≤
2C invδ�t

h

(√
μ0

ǫ0ǫ∞
||Hn+1

h
− Hn

h||
2 +

√
ǫ0ǫ∞
μ0

||En+1
h

− Enh||
2

)
− �T . (A.89)

We now require the time step �t satisfies �t ≤
√

μ0ǫ0ǫ∞
4C inv δ

h, to ensure a non-negative right hand side in (A.89), hence the 

energy stability, En+1
h,1

≤ E
n
h,1

. Particularly, the time step condition is �t ≤
√

μ0ǫ0ǫ∞
4δ

h, if one recalls C inv = 1 when K = 0. In 
general when K ≥ 1, using inverse inequalities and Young’s inequality, one can establish similar results as in Case 1.

For the fully implicit scheme (4.15), the only difference comes from analyzing the PDE part. More specifically, the equa-
tion (A.67) becomes
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(
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h
||2 − ||Hn

h||
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)
= �t

(
ah(E

n+1
h

, Hn+1
h

) + bh(H
n+1
h

, En+1
h

)
)

,

(A.90)

and (A.79) is replaced by

E
n+1
h,1

− E
n
h,1 ≤ �t

(
ah(E

n+1
h

, Hn+1
h

) + bh(H
n+1
h

, En+1
h

)
)
− �T ≤ 0. (A.91)

This energy stability holds for any �t > 0, and the method is therefore unconditionally stable. ✷
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